

Numerical aspects of the advection-diffusion equation

J. Vira, M. Sofiev

SILAM winter school, February 2013, FMI

Outline

- Intro
- Some common requirements for numerical transport schemes
- Lagrangian approach
- Eulerian schemes
 - features and error sources
 - SILAM: Galperin's scheme
- Vertical transport in Eulerian models
 - vertical levels
 - solving diffusion

Introduction

 The following aims to provide an only slightly technical view to numerical solution of the advection-diffusion equation

$$\frac{\partial c}{\partial t} = \nabla \cdot (K \nabla c) - \nabla \cdot (\vec{v}c)$$
(1)

- Will focus separately in advection and diffusion
 - > the approach of operator splitting: instead of solving (1) as whole, develop schemes for the individual terms
 - Advantages:
 - simpler implementation
 - numerical schemes can be tailored for each sub-problem
 - generalizable to include chemistry and other processes
 - Disadvantage:
 - additional numerical error not easily analysed
 - Operator splitting is used by nearly all chemistry-transport models

Some common requirements for numerical schemes in dispersion models

- Mass conservation
- Positivity: no negative concentrations
- Stability: no infinite concentrations
- "sufficient accuracy"...
- "sufficiently low" computational cost
- Two approaches frequently satisfy the above:
 - Lagrangian, particle based models
 - Eulerian, finite volume models
- spectral, finite element, finite difference, collocation, etc....

Eulerian and Lagrangian schemes

- Euler
 - split the domain in grid cells
 - track the mass budget of each cell
 - turbulent mixing described as diffusion
 - SILAM v4, v5

Lagrange

- track the motion of the pollutant represented by finite number of model particles
- count model particle density to obtain concentration (mass/volume)
- turbulent mixing described as a random process
- SILAM v4, v5.x
- Lagrange attractive especially for point sources, but
 - handling diffuse emission sources is expensive
 - handling nonlinear chemistry is very difficult

Lagrangian dynamics: particle trajectories

> A single particle trajectory is not meaningful – their statistics are!

SILAM Euler / Lagrange

Eulerian advection schemes

- Finite volume schemes usually mass conservative by construction
- Everything else needs to be worked out...
- We'll look at some issues arising with Eulerian schemes

Issues with Eulerian advection schemes

(From Rood, 1987) Monotonicity, positivity (lack of), Numerical diffusion, Instability

Eulerian advection schemes

- Classical finite difference schemes rarely useful for advection
 - Behave poorly with sharp gradients
 - Godunov's theorem: a linear, monotonous scheme is at most first order accurate
 - Stability requires a small Courant number $C = \frac{V \Delta c}{\Lambda x}$
- Practical advection schemes are nonlinear
- One approach: borrow elements from Lagrangian schemes
 - no strict stability constraints
 - Example: the Galperin scheme, as used in SILAM

Galperin's scheme: examples

Galperin scheme:

Comments on the Galperin scheme

- Very low numerical diffusion
- Mass conservative
- Positively definite, but not monotonous
- Stable at any Courant number
 - but accuracy suffers at high *C*!
- Good computational performance, but requires 3 additional tracers for each chemical species (first moment of mass in 3 dimensions)
- In SILAM:
 - V2 advection: first order time integration
 - V3 advection: second order implicit time integration
 - V3 slower than V2, but better performance for longlived species (especially in complex terrain)

Additional issues: mass consistency

- Mass conservation is a global feature of advection scheme (ignore diffusion for a moment...)
- concentration: the conservative form

$$\frac{\partial c}{\partial t} + \nabla \cdot (c\vec{\nu}) = 0 \tag{2}$$

mixing ratio: the advective form

$$\frac{\partial\xi}{\partial t} + \vec{v} \cdot \nabla\xi = 0, \quad \xi = c/\rho \tag{3}$$

- Is the mixing ratio computed from solution of (2) guaranteed to satisfy (3)?
- Consider a consequence of (3): initially constant mixing ratio stays constant...

Additional issues: mass consistency

• ...or not

- Problem is related to differences in schemes for computing the winds (weather model) and the advection (CTM)
- Surprisingly recent issue in the AQ modelling community

Vertical discretization in Eulerian models

- Model vertical layers may be defined in terms of pressure, height from ground, altitude, etc.
 - constant height
 - hybrid terrain influenced
- SILAM:
 - "standard" setup levels defined by height
 - "hybrid levels" as option since v5.1
- Vertical advection:
 - slower than horizontal, but not negligible!
 - Galperin's scheme
- Vertical diffusion...

Vertical diffusion

- This time classical schemes work (almost!)
- Textbook solution of the 1D diffusion
- Flux-preserving averaging of the diffusivities K_z (Sofiev, 2002)

$$< K_z >_{i, i+1} = \frac{\Delta z_i}{\int\limits_{i}^{i+1} \frac{dz}{K_z(z)}}$$

Figure 1. Multilayer structure of the vertical column.

Final comments

- Different simulations and pollutants are sensitive to different features of numerical schemes
 - pollutants with concentrated sources, short term simulations: numerical diffusion, resolving gradients
 - long-lived pollutants, long term simulations: mass consistency issues, overall accuracy
- Excluding input/output, computing tranport takes ~20% of run time in chemistry simulations, closer to 100% in non-chemistry runs

Literature

• Classical advection schemes, review:

- Rood, R., 1987. Numerical advection algorithms and their role in atmospheric transport and chemistry models. Reviews of geophysics 25, 71–100.
- Some advection schemes used in other current CTMs:
 - Bott, A., 1989. A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Monthly Weather Review 117, 1006–1016.
 - Lin, S.J., Rood, R.B., 1996. Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Review 124, 2046–2070.
 - Colella, P., Woodward, P., 1984. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. Journal of Computational Physics 54, 174–201.
- SILAM:
 - Sofiev, M., Galperin, M., Genikhovich, E., 2008. A construction and Evaluation of Eulerian Dynamic Core for the Air Quality and Emergency Modelling System SILAM, in: Borrego, C., Miranda, A.I. (Eds.), Air Pollution Modeling and Its Application XIX. Springer, pp. 699–701.
 - Sofiev, M., 2002. Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models. Journal of Geophysical Research 107, 4159.
 - Galperin, M., 2000. The approaches to correct computation of airborne pollution advection. Gidrometeoizdat 54–68.
 - Petrova, S., Kirova, H., Syrakov, D., Prodanova, M., 2008. Some fast variants of TRAP scheme for solving advection equation comparison with other schemes. Computers & Mathematics with Applications 55, 2363–2380.
- Mass consistency issues:
 - Sportisse, B., Quelo, D., Mallet, V., 2007. Impact of mass consistency errors for atmospheric dispersion. Atmospheric Environment 41, 6132–6142.
 - Hu, Y., Talat Odman, M., 2008. A comparison of mass conservation methods for air quality models. Atmospheric Environment 42, 8322–8330.