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Introduction 
• The following aims to provide an only slightly technical view to 

numerical solution of the advection-diffusion equation 

 

 

• Will focus separately in advection and diffusion 

• > the approach of operator splitting: instead of solving (1) as 
whole, develop schemes for the individual terms 

• Advantages: 

• simpler implementation 

• numerical schemes can be tailored for each sub-problem 

• generalizable to include chemistry and other processes 

• Disadvantage: 

• additional numerical error not easily analysed 

• Operator splitting is used by nearly all chemistry-transport models 
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Some common requirements for  
numerical schemes in dispersion models 

• Mass conservation 

• Positivity: no negative concentrations 

• Stability: no infinite concentrations 

• “sufficient accuracy”… 

• “sufficiently low” computational cost 
• Two approaches frequently satisfy the above: 

• Lagrangian, particle based models 

• Eulerian, finite volume models 

• spectral, finite element, finite difference, collocation, 
etc…. 
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Eulerian and Lagrangian schemes 

• Euler 

• split the domain in grid cells 

• track the mass budget of each cell 

• turbulent mixing described as diffusion 

• SILAM v4, v5 

• Lagrange 

• track the motion of the pollutant represented by finite 
number of model particles 

• count model particle density to obtain concentration 
(mass/volume) 

• turbulent mixing described as a random process 

• SILAM v4, v5.x 

• Lagrange attractive especially for point sources, but 

• handling diffuse emission sources is expensive 

• handling nonlinear chemistry is very difficult 
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Lagrangian dynamics: particle trajectories 

>  A single particle trajectory is not meaningful – their statistics are! 



SILAM Euler / Lagrange 
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Eulerian advection schemes 

• Finite volume schemes usually mass conservative by 
construction 

• Everything else needs to be worked out… 

• We’ll look at some issues arising with Eulerian 
schemes 

8 



Issues with Eulerian advection schemes 
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(From Rood, 1987) 

Monotonicity, 

positivity (lack of), 

Numerical diffusion, 

Instability 
 



Eulerian advection schemes 

• Classical finite difference schemes rarely useful for 
advection 

• Behave poorly with sharp gradients 

• Godunov’s theorem: a linear, monotonous scheme is at 
most first order accurate 

• Stability requires a small Courant number 

 

• Practical advection schemes are nonlinear 

• One approach: borrow elements from Lagrangian 
schemes 

• no strict stability constraints 

• Example: the Galperin scheme, as used in SILAM 
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Galperin’s scheme: examples 



a

SCD

b

SCD

c

SCD

d

SCD

Galperin scheme:                                                              Bott scheme: 



Comments on the Galperin scheme 
• Very low numerical diffusion 

• Mass conservative 

• Positively definite, but not monotonous 

• Stable at any Courant number 

• but accuracy suffers at high C! 

• Good computational performance, but requires 3 
additional tracers for each chemical species (first 
moment of mass in 3 dimensions) 

• In SILAM: 

• V2 advection: first order time integration 

• V3 advection: second order implicit time integration 

• V3 slower than V2, but better performance for long-
lived species (especially in complex terrain) 
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Additional issues: mass consistency 

• Mass conservation is a global feature of advection 
scheme (ignore diffusion for a moment…) 

• concentration: the conservative form 

 

 

• mixing ratio: the advective form 

 

 

• Is the mixing ratio computed from solution of (2) 
guaranteed to satisfy (3)?  

• Consider a consequence of (3): initially constant 
mixing ratio stays constant… 
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Additional issues: mass consistency 

• …or not 
 

 

• Problem is related to differences in schemes for 
computing the winds (weather model) and the 
advection (CTM) 

• Surprisingly recent issue in the AQ modelling 
community 

 



Vertical discretization in Eulerian models 

• Model vertical layers may be defined in terms of 
pressure, height from ground, altitude, etc. 

• constant height 

• hybrid terrain influenced 

• SILAM: 

• “standard” setup – levels defined by height 

• “hybrid levels” as option since v5.1 

• Vertical advection: 

• slower than horizontal, but not negligible! 

• Galperin’s scheme 

• Vertical diffusion… 
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Vertical diffusion 

• This time classical schemes 
work (almost!) 

• Textbook solution of the 1D 
diffusion  

• Flux-preserving averaging of 
the diffusivities Kz (Sofiev, 
2002) 
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Final comments 

• Different simulations and pollutants are sensitive to 
different features of numerical schemes 

• pollutants with concentrated sources, short term 
simulations: numerical diffusion, resolving gradients 

• long-lived pollutants, long term simulations: mass 
consistency issues, overall accuracy 

• Excluding input/output, computing tranport takes 
~20% of run time in chemistry simulations, closer to 
100% in non-chemistry runs 
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