

Introduction to atmospheric dispersion modelling

M.Sofiev

- Main parts of the atmosphere
- Basic terms
 - > atmospheric tracer
 - temporal and spatial scales
 - > life time in the atmosphere
 - life cycle of atmospheric tracers
- Dispersion equation
- Langrangian and Eulerian dispersion models
- Parts of a dispersion model
- Model Quality Assurance
- Summary

Major layers of the atmosphere

- Troposphere (tropos=mixing): interaction with surface
- Stratosphere: ozone-uv heating
- Mesosphere: mixing again
- Thermosphere: O₂, N₂ solar radiation heating
- Ionosphere: ions
- Exosphere: fast molecules escape to the open space

Pollution cycle in the troposphere

- Main parts of the atmosphere
- Basic terms
 - > atmospheric tracer
 - temporal and spatial scales
 - > life time in the atmosphere
 - > life cycle of atmospheric tracers
- Dispersion equation
- Langrangian and Eulerian dispersion models
- Parts of a dispersion model
- Model Quality Assurance
- Summary

Dispersion equation

- Mass conservation
 - ➤ transport
 - > sources
 - ➤ sinks
- Scale separation
 - ➤ mean flow
 - > turbulence
- Closure problem

 \succ K-theory \rightarrow turbulent diffusion coefficient

$$LC = \frac{\partial C}{\partial t} + \frac{\partial}{\partial x_i} (U_i C) - \frac{\partial}{\partial x_i} \rho K_{ii} \frac{\partial (C / \rho)}{\partial x_i} + R(C) = E$$

From concentration to load

$$M = \int_{0}^{T} dt \int_{-\infty}^{\infty} \int \int C p \, dx = (C, p) - \text{load functional}$$

p is a weight (sensitivity) function of the load:

- Population exposure p(
- Ecosystem damage
- Observational site

 $p(\mathbf{x}, \mathbf{t}) = \delta(\mathbf{x} - \mathbf{x}_{city})$ $p(\mathbf{x}, \mathbf{t}) = p(\mathbf{t}) \ \mathbf{1}(\mathbf{A}_{ecosystem})$ $p(\mathbf{x}, \mathbf{t}) = \delta(\mathbf{x} - \mathbf{x}_{site}) \ \mathbf{1}(\mathbf{t}, \mathbf{t}_{beg}, \mathbf{t}_{end})$

Alternative way to get the load function

Consider some function C^* satisfying $L^*C^* = p$, where L^* is adjoint to L.

Then

$$M = (C^*, E) = (C^*, LC) = (L^*C^*, C) = (p, C)$$

L^{*}C^{*} = p - adjoint dispersion equation
$$\partial_{x} = \partial_{x} = \partial_{x} = \partial_{x} = \partial_{x} = C = C^* \xrightarrow{x \to \infty} 0$$

$$L^* = -\frac{\partial}{\partial t} - \frac{\partial}{\partial x_i} (U_i) - \frac{\partial}{\partial x_i} K_{ii} \frac{\partial}{\partial x_i} + R(C) \qquad \begin{array}{c} C, C^* \to 0\\ C^*(t=T) = 0 \end{array}$$

Forward problem:

$$\mathbf{L} = \frac{\partial}{\partial t} + \frac{\partial}{\partial x_i} (\mathbf{U}_i) - \frac{\partial}{\partial x_i} \rho \mathbf{K}_{ii} \frac{\partial (1/\rho)}{\partial x_i} + \mathbf{R}; \quad \mathbf{L}\mathbf{C} = \mathbf{E}; \ \mathbf{M} = (\mathbf{p}, \mathbf{C})$$

Inverse (adjoint) problem

$$L^* = -\frac{\partial}{\partial t} - \frac{\partial}{\partial x_i} (U_i) - \frac{\partial}{\partial x_i} K_{ii} \frac{\partial}{\partial x_i} + R; \quad L^* C^* = p; \ M = (E, C^*)$$

- Main parts of the atmosphere
- Basic terms
 - > atmospheric tracer
 - temporal and spatial scales
 - > life time in the atmosphere
 - > life cycle of atmospheric tracers
- Dispersion equation
- Langrangian and Eulerian dispersion models
- Parts of a dispersion model
- Model Quality Assurance
- Summary

Classifications of models

- Model principles
 - Eulerian
 - Lagrangian
 - Gaussian
 - statistical Monte-Carlo
- Scales
 - global
 - continental
 - regional
 - local/urban

Classifications of models.2

> Chemicals

- acid
- ozone
- greenhouse gas
- inert aerosol/dust
- radio-activity
- toxic
- persistent pollutants
- Model media
 - atmospheric
 - multi-media
 - integrated models

Classifications of models.3

- Input data
 - climatological
 - real-time data
- Time dimension: direction, horizon
 - re-analysis
 - now-casting
 - forecasting
- Problem to solve
 - forward
 - inverse

- Main parts of the atmosphere
- Basic terms
 - > atmospheric tracer
 - temporal and spatial scales
 - > life time in the atmosphere
 - > life cycle of atmospheric tracers
- Dispersion equation
- Langrangian and Eulerian dispersion models
- Parts of a dispersion model
- Model Quality Assurance
- Summary

SILAM v.5: outlook

- Modules
 - 8 chemical and physical transformation modules (6 open for operational use),
 - ➢ 6 source terms (all open),
 - 2 aerosol dynamics (one open)
 - > 3D- and 4D- Var
- Domains: from global to betameso scale (~1km resolution)
- Meteo input:
 - > ECMWF
 - HIRLAM, AROME, HIRHAM, ECHAM, and any other who can write GRIB-1 or GRIB-2

> WRF

FMI regional AQ assessment and forecasting platform

SILAM scales

- Main parts of the atmosphere
- Basic terms
 - > atmospheric tracer
 - temporal and spatial scales
 - > life time in the atmosphere
 - > life cycle of atmospheric tracers
- Dispersion equation
- Langrangian and Eulerian dispersion models
- Parts of a dispersion model
- Model Quality Assurance
- Summary

Model vs reality

- Model is never a copy of reality
 - It represents only those features, which are deemed to be important for a specific application
- The extent of their similarity is to be established in each specific case

I.Repin. Zaporozhje Cossacks are writing a letter to Turkish sultan

W.Kandinski. Cossacks

Model Quality Assurance (QA)

- Tests of individual modules (development stage)
- Sensitivity runs
- Model-measurement comparison
- Model-model comparison

Model-measurement comparison

- The only connection between model and reality
- Data sets from different origin
 - > point observations vs grid-mean model results
 - representativeness error
 - instrumental errors
- Observations are expensive => sparse
- Limited number of observed variables
- Specific statistical methods are required to obtain nontrivial conclusions

Model inter-comparison

- Useful if lacking measurements
- Similar features of data
- Large data sets => high accuracy
- Wide variety of analytical methods
- Ensemble model
- Possibly, no connection to reality

Summary

- Distribution of an atmospheric pollutant is described via dispersion equation, which is a representation of the mass conservation law
- Duality of dispersion problem allows for usage of forward and adjoint dispersion equations
 - ➢ identical final results the load
 - > choice depends on specific task
- Model quality assurance implies several actions and covers ALL stages of the model development