

# Source terms in volcanic eruptions and nuclear emergencies

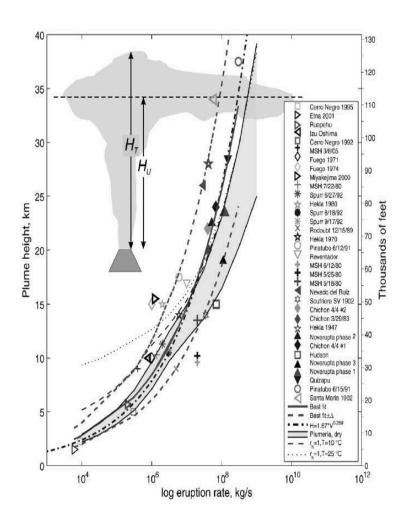
J. Vira





# Source terms for volcanic eruptions

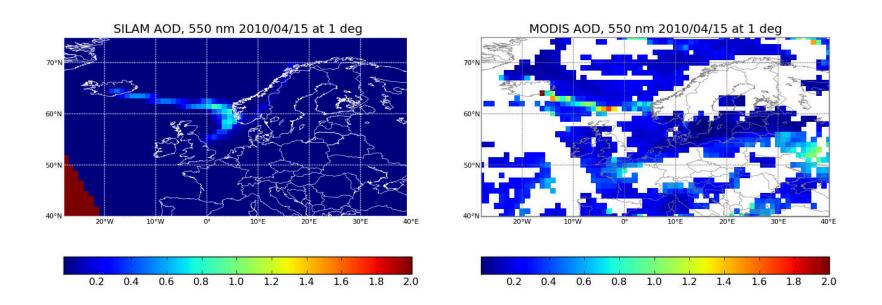
- Experience from the Eyjafjallajökull (2010) and Grimsvötn (2011)
- Emission mass flux not measured
- Plume top measured with radars, cameras, etc.
- How to obtain quantitative predictions?
  - try to estimate mass flux from plume top
  - try to calibrate using satellite observations




# Plume top as a proxy for eruption mass flux

 Common approach: empirical fits like Mastin et al. (2009)

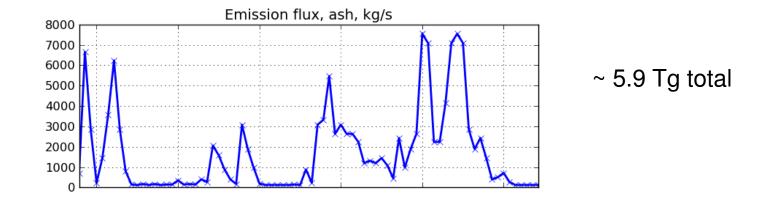
### Problems:


- big uncertainty in the fit
- size spectrum not known: is there 1%, 2% or 5% of mas in PM10?
- plume top not always well defined





# **Calibration efforts using satellites**


#### Ash AOD, April 14 – SILAM vs MODIS



MODIS data obtained via the GIOVANNI website



# Source terms: Eyjafjallajökull



- Plume height from 12 h averaged radar observations
- Ash emission computed using the Mastin et al. (2009) fit, assuming 2% LRT fraction



## Source terms in nuclear emergencies

- Released amounts often estimates as fractions of the core inventory – the cocktail of nuclides present in the reactor
- The most volatile components are of primary interest
  - Noble gases (Xe, Kr, ...)
  - Halogens (I, ...)
  - Alkaline metals (Cs,...)

|                   | Gap Release*** | Early In-Vessel | Ex-Vessel | Late In-Vessel |
|-------------------|----------------|-----------------|-----------|----------------|
| Duration (Hours)  | 0.5            | 1.5             | 3.0       | 10.0           |
| Noble Gases**     | 0.05           | 0.95            | 0         | 0              |
| Halogens          | 0.05           | 0.25            | 0.30      | 0.01           |
| Alkali Metals     | 0.05           | 0.20            | 0.35      | 0.01           |
| Tellurium group   | 0              | 0.05            | 0.25      | 0.005          |
| Barium, Strontium | 0              | 0.02            | 0.1       | 0              |
| Noble Metals      | 0              | 0.0025          | 0.0025    | 0              |
| Cerium group      | 0              | 0.0005          | 0.005     | 0              |
| Lanthanides       | 0              | 0.0002          | 0.005     | 0              |

Table 3.12 BWR Releases Into Containment\*

· Values shown are fractions of core inventory.

\*\* See Table 3.8 for a listing of the elements in each group

\*\*\* Gap release is 3 percent if long-term fuel cooling is maintained.



# Examples of releases in severe nuclear accidents(1 $PBq = 10^{15} Bq$ )

- Chernobyl (NEA/OECD, <u>http://www.oecd-nea.org/rp/chernobyl/c02.html</u>)
  - ~6500 PBq Xe-133 (100%)
  - ~760 PBq I-131 (50-60%)
  - ~85 PBq Cs-137 (20-40%)
  - Additionally long-lived Sr and Pu isotopes, etc.
- Fukushima (Stohl et al., 2012 ACP, inventory estimate + inverse computations, includes all units and spent fuel storage pools)
  - 15.3 EBq Xe-133 (100%)
  - 36.6 PBq Cs-137 (2 %)