

LMATIETEEN LAITOS Meteorologiska institutet Tinnish meteorological institute

Data assimilation and inverse problems

J. Vira, M. Sofiev

SILAM winter school, 2013

Introduction

- "How to combine observations and model fields into an estimate of the atmospheric state?"
 - Chemical data assimilation for forecasting and reanalysis
- "Where is the source of the toxic pollutant that we measured?" or "How much SO2 was emitted in this volcanic eruption"
 - Inverse problems related to individual sources
- "What is the geographic distribution of emission fluxes of CH4?" or "How can we refine emission inventories using observations"
 - Flux inversion studies. A priori emission estimate usually required.

Outline

- Some data assimilation methods
- Examples
 - Chemical data assimilation: 3D-Var analyses of ozone
 - Chemical data assimilation with emission adjustment: 4D-Var assimilation of SO2
 - Variational inversion to determine SO2 emission flux in a volcanic eruption

Data assimilation and inverse problems: definition and methods

- Inverse problem: use indirect measurements to estimate quantities not directly observed
 - example: determine shape of a drum from the sound of drum (this one was shown to be unsolvable, though!)
- Data assimilation in meteorology:
 - combine observations and the previous model forecast
 - use the state estimate for initializing the next forecast
- Data assimilation may form an inverse problem
 - indirect measurements
 - past state may be adjusted using current observations
 - data assimilation may be extended to the source term

Basic data assimilation concepts

- Control variable ξ : the parameter being adjusted
- The background ξ_b : the a priori value for control variable
- The analysis ξ_a : the adjusted value for the control variable
- Model operator maps the control variable to model state:

$$M:\,\xi\mapsto M(\xi)=x$$

 Observation operator maps the model state to an observed quantity

$$H: x \mapsto H(x) = y$$

 Cost function measures the difference between simulated and real measurements, and from the background value

$$J(\xi) = \|\xi - \xi_{b}\|^{2} + \|y - H(M(\xi))\|^{2}$$

Ozone analyses

- Surface O3 measurements assimilated every hour
- Method: 3D-Var
 - every hour, minimize

$$J(x) = ||x - x_{b}||^{2} + ||H(x) - y||^{2}$$

- x_b is the concentration forecasted from previous analysis
- y = Hx is the observations at stations
- B is the background error covariance matrix, defines the shape of the increment x_a - x_b

Example: SILAM O_3 forecast and observations in MACC for 9 November, 2010 00UTC

Example: SILAM O_3 <u>analysis</u> and observations in MACC, for 9 November, 2010 00UTC

Concentration of O3, µg/m³

Assimilation of O_3 , 3 weeks in July 2009

- Assimilation experiment with the 3D-Var setup
- 72 h forecast started every 00 and 12 UTC
- RMSE calculated for 132 not assimilated stations
- Control run with no assimilation

O₃ RMSE, µg m⁻³

The effect of initial condition on the forecast

- Contrasting initial condition created with inverted wind field
- Identical meteorological and emission forcing for the next 48 hours
- Aerosol sulfate shown, HIRLAM meteorology for January 2000

0.01 0.05 0.2 0.7 2 5 10 20 40

Chemical DA beyond the "initial state" approach

- The evolution of atmospheric composition weakly affected by the initial state
- Effect likely to vary by chemical compound
 - Best chances with pollutants with a dense observation network and moderate or long lifetime (ozone!)

Spatial correlation coefficient, SO₂, SO₄⁼

Chemical composition is strongly driven by pollutant emissions

• Can the emissions be adjusted with data assimilation?

Assimilation experiment with emission adjustment

- Assimilation experiment for Southern Europe covering 2006/2/8 ... 2006/2/22
- Data assimilation: 4D-VAR, insitu observations
 - Both initial condition field and emission correction fluxes are influenced by observations
 - 24 h assimilation windows + 24 h forecasts
- Consistent emission corrections on some areas:
 - Mt. Etna: up to 70% decrease in total emission
 - Smaller adjustments in Hungary, Czech and northern Italy
- Significant day-to-day variation

Ref.: Vira & Sofiev (2012), Atmos. Env.

Adjusting the emission or initial condition?

- SO₂ assimilated at 260 stations
- RMSE for SO₂ compared at 50 control stations
- 4D-Var: observations assimilated for the first 24 hours
- 3D-Var: observations used only at t = 0h
- Reference: no assimilation

Comments on chemical data assimilation in air quality forecasting

- For short and medium lived species, emission rate is potentially powerful control parameter
 - how to avoid attributing model errors to emission?
 - how to forecast emission rates?
- 3D-Var type methods useful for reanalysis and sometimes forecasting, however chemical coupling may cause surprises
 - example: photostationary equilibrium $[O_3] = \frac{j}{k} \frac{[NO_2]}{[NO]}$
 - Our experience: assimilation of NO_2 not beneficial for O_3

Estimating SO2 emission in the Grimsvötn eruption

- SO2 emitted massively in volcanic eruptions and observable with satellite instruments
- Use the data from the OMI instrument to determine amount, timing and vertical profile of SO2 emission during the Grimsvötn eruption in May 2011
- 120 h simulation, emission rate adjusted every 24 h
- 4D-Var based inversion method, control variable E^k_i where i = 1...N_{levels} and k = 1...5 for each 24 h slot
- Total column observations vertical structure not observed
- work in progress!

Emission flux after inversion

Conclusions

- A number of inverse problems in atmospheric composition modeling are studied in connection to data assimilation
 - among them, chemical data assimilation analogous to data assimilation in weather forecasting
- Hot Topic #1: satellite data usage
 - potentially good coverage with good representativeness
 - often not vertically resolving
- Hot Topic #2: emission assessments
 - volcanoes and other natural sources
 - anthropogenic sources: especially in developing countries