

Origin of Arctic Haze Aerosols Based on

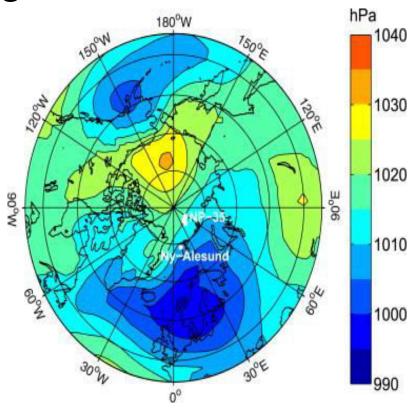
Stock et al., Springtime arctic aerosol: smoke versus haze, a case study for March 2008, *Atmos. Environ.*, 52, 48-55, 2011

Eva- Stina Kerner¹ and Pekka Kolmonen²

¹ Tartu University, Estonia

² FMI, Climate Change Unit, Helsinki, Finland

Arctic Springtime Haze

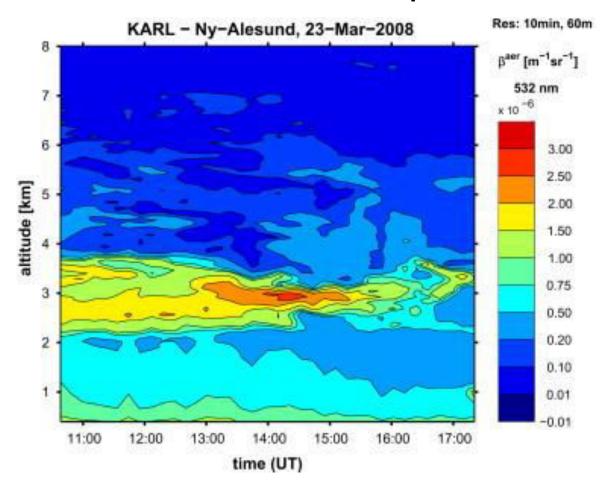

- Usually of anthropogenic origin
- Dust haze
- Smoke haze (not common)
- Long staying staying time during arctic spring: 1.
 Lack of wet deposition. 2. Elevated layer

Aerosol measurements

- Sun photometer + Lidar measurements at two locations
- Ny-Ålesund in Spitzbergen (78.9° N, 11.9° E)
- NP-35, A Russian icefloe drifting station (85.5-84.2° N, 56.7-42.0° E)
- Sun photometer results far north in March!!!!!

From Stock et al.

Sun photometer results


03.08 τ500nm τfine τcoarse α	N	Ny_Ålesund 961 0.17 ± 0.05 0.13 ± 0.05 0.03 ± 0.05 1.4 ± 0.09
17.03	Ν	0.00
т500nm		
τfine		
tcoarse		
α		
21.03	N	
т500nm		
τfine		
tcoarse		
α		
23.03.	N	358
т500nm		0.22 ± 0.026
τfine		0.19 ± 0.026
tcoarse		0.03 ± 0.004
α		1.5 ± 0.02

NP-35 251 0.19 ± 0.05 0.15 ± 0.05 0.04 ± 0.02 1.4 ± 0.19
10 0.35 ± 0.005 0.28 ± 0.004
0.07 ± 0.004 1.2 ± 0.01 12
0.32 ± 0.006 0.25 ± 0.007 0.07 ± 0.012 1.3 ± 0.04

LIDAR example

From Stock et al.

Motivation for transport modeling

- Locate the origin of the haze (high AOD) aerosols
- Possibly draw conlusion about the cause of the aerosols
- Hypothesis: high, spatially concentrated, PM in SILAM footprint may indicate point or small area source

SILAM setup

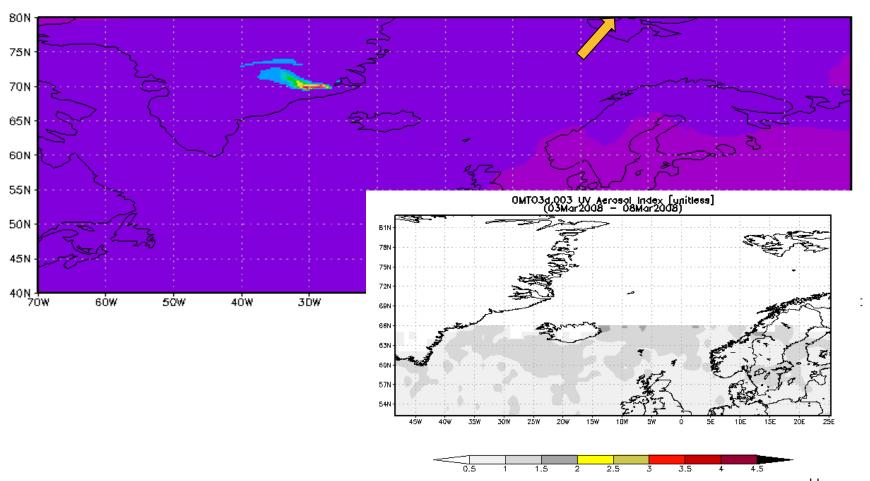
- Bakcward runs, 5 days
- Point of interest: footprints
- Source: elevated (2500-3000 m) 2-mode standard aerosol cocktail, 24 hour "measurement"

How we broke SILAM

- Backward runs close to pole with extensive lateral area may be unstable. Example: backward run started to run forward
- Solution: adjust the region of interest
- ECMWF meteo is sparse far north (Stock et al.). Meteo with polar coordinates would be more desirable

Reference data

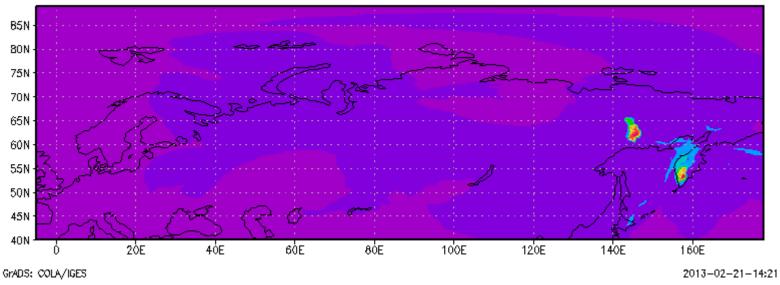
- SMOKE: satellite (MODIS, AATSR) fire mapping or AOD. Not applicable: too early time of the year => sun zenith angle too big
- SMOKE: OMI aerosol index shows locations of absorbing aerosols. Qualitative only, determined at UV
- GENERAL AOD: AERONET sun photometer data inside a footprint. No go: same as satellite fire products

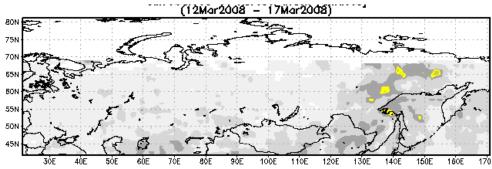

Results

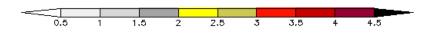
- Averaged footprints of PM
- Ground layer as ground sources were sought
- OMI aerosol index (AI) as a reference

Ny-Ålesund, 2008.03.08, AOD = 0.17

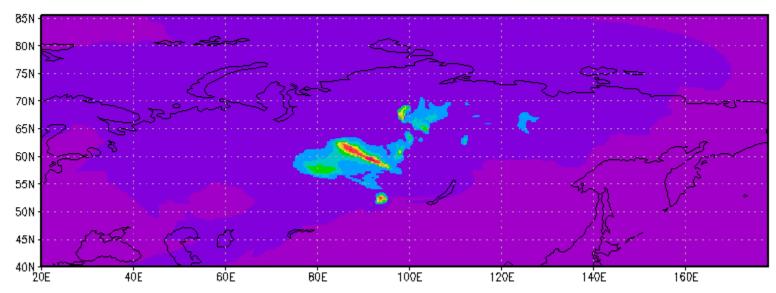
NP-35, 2008.03.08, AOD = 0.19

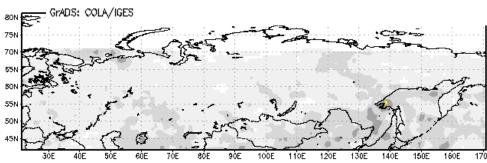



GrADS: COLA/IGES



NP-35, 2008.03.17, AOD = 0.35







NP-35, 2008.03.21, AOD = 0.32

2013-02-21-14:58

Discussion

- SILAM worked
- Input data must be checked thoroughly