
Basic course of tropospheric composition modelling 

Course outline 
Auditorium: Master and PhD student specializing in atmospheric physics and meteorology. 
Required courses include higher mathematics (PDE, ODE) and statistics, basic chemistry and 
physics. 

Schedule: one lecture per week, one seminar per 2 weeks, home assignments 

Credits: 5 points 

The aim of the course is to provide the basic knowledge about construction and application of 
atmospheric chemistry-transport models. The size of the course will not allow detailed 
consideration of specific parameterizations but practical examples will be given at the 
seminars, home computer practice and specific tasks. 

- overview of the atmospheric composition problems, their main types, areas of research 
and applications 

- basics of forward and adjoint atmospheric advection-diffusion equation (AD): 
derivation, main features, terms 

- continuity equation and mass budget 

- advection term of the AD, its representation in models. Types of dispersion models 

- diffusion term of the AD, its representation in models. Turbulent closures and 
parameterizations 

- chemical transformations of the atmospheric tracers, representation in the AD 

- removal terms in the AD. Dry and wet deposition, degradation. 

- input and output data. Links with meteorological and impact-assessment models. On-
line and off-line coupling with meteorological models. 

- model-measurement comparison. Representativeness of point observations. Sub-grid 
variability of modeled data. 

Main literature: 
Seinfeld, J., Pandis, S. (2006) Atmospheric chemistry and physics. From air pollution to 
climate change. J.Wiley & sons, Inc., ISBN 978-0-471-72018-8. 

Jacobson, M. (1999) Fundamentals of atmospheric modelling. Cambridge Univ. press. ISBN 
0-521-63717-1. 

Nieuwstadt, F.T.M. & van Dop, H. (1982) Atmopspheric turbulence and air pollution 
modelling. D.Reidel publishing company. ISBN 90-277-1365-6. 

Jacob, D. (1999) Introduction to atmospheric chemistry. Princeton Univ. press. ISBN 0-691-
00185-5. 

Holton, J.R. (2004) An introduction to dynamic meteorology. Elsevier Academic Press, 
ISBN-13: 978-0-12354015-7. International Geophysics series, 88. 
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Vertical structure of the atmosphere 
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Figure 1.  Vertical layers of the atmosphere 

 

Troposphere. The lowest layer, extends up to tropopause (8-15 km, i.e. 300-100hPa), 
absolute temperature decreases with altitude with a mean rate of ~50 km-1 (dry-air lapse rate 
9.7 K km-1). Strong mixing. 

Stratosphere. Extends from tropopause to stratopause at ~50km (~1 hPa). Temperature 
increases with altitude (absorption of solar UV radiation by ozone), vertical mixing is slow. 

Mesosphere. Extends from stratopause to mesopause at ~85km (~0.01 hPa). Absolute 
temperature decreases with altitude, comparatively rapid vertical mixing. Mesopause is the 
coldest point in the atmosphere. 

Thermosphere. Region above the mesopause, extends to hundreds km (pressure down to 10-2 
Pa). Temperature grows with altitude, the hottest region due to solar radiation absorption by 
N2 and O2. 

Ionosphere covers upper part of mesosphere and lower part of thermosphere. Characterised 
yb high concentrations of ions produced by photoionization. 

Exosphere. The upper-most region of the atmosphere. High-energy molecules escape to the 
open space. 
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Troposphere. Tropos is a Greek word meaning mixing. The name was given by Sir Napier 
Shaw (British meteorologist). Most of processes are controlled by the distance from the earth 
surface, including the temperature decline, boundary layer in the lowest part of the 
troposphere, etc. Tropopause by WMO definition is the layer where the lapse rate falls down 
to 2 K km-1 and the lapse rate averaged between this level and any level within next 2 km 
does not exceed 2 K km-1. The troposphere contains 80% of the total atmospheric mass. 

Reasons for vertical motions come from: (i) sun-heated surface initiating convection, (ii) 
convergence / divergence of horizontal flows, (iii) horizontal flows over non-flat topographic 
elements, (iv) convective forces caused by the latent heat release due to water condensation. 

 

Examples of the tropospheric composition problems 
There can be numerous criteria for classification of the atmospheric composition problems. 
For instance, they cover a wide range of the spatial and, correspondingly, temporal scales:  
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Figure 2.  Spatial and temporal scales of variability of some of main atmospheric tracers. 

 

Typically recognized scales: from local to γ-β-α mesoscale to regional to continental to 
global. Respectively, the species can be segregated in accordance with their characteristic 
lifetime and spatial scales of variability. Apart from horizontal scales, vertical scales can also 
be considered for some phenomena that involve more than one of the major atmospheric 
layers. 
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Table 1. Examples of scales of atmospheric composition problems and phenomena 

Phenomenon Horizontal scale Vertical scale Temporal scale 

Urban air pollution 1-10 km < 1 km minutes - hours 

Mesoscale air pollution (impact 
of cities, industrial areas) 

10-100 ABL and FT up to a 
few km 

hours - days 

Regional air pollution (e.g., 
acidification, toxic aerosols) 

100-1000 troposphere days - weeks 

Distribution of multi-media and 
long-living pollutants 

1000-10,000 troposphere months - years 

Stratospheric ozone depletion 10,000-global trpoposphere + 
stratosphere 

years – decades 

Greenhouse gas increase and 
climate forcing 

1000-global troposphere years - decades 

Aerosol – climate interaction 100-10,000 troposphere years 

Troposphere – stratosphere 
exchange 

1 - 1000 troposphere and 
lower stratosphere 

hours - days 

 

Process- and scale-interactions. 

All the atmospheric composition phenomena are inter-connected, so as the parts of the 
atmosphere. The cycling of many atmospheric constituents starts at local sources, often of 
anthropogenic but also natural origin, include up-scaling of the transport in both vertical and 
horizontal dimensions, chemical and physical inter-actions with other species and atmospheric 
phenomena, removal from the atmosphere, etc. Depending on the tracer, the range of scales 
where the specific contribution is important can vary from local to global. Example: CO, 
which is emitted by cars and other anthropogenic and some natural sources, takes part in 
urban smog formation, regional-scale ozone production, and, finally being converted to CO2, 
contributes to climate forcing and interactions. 
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Basic terms, definitions and relations 
 

The atmospheric tracer is a substance (in gaseous or aerosol form) that is transported being 
embedded in the atmospheric flows but does not provide any significant feedback to these 
flows.  

Atmospheric composition is an objective characterization of the chemical constituents of air, 
as well as their interaction and transformation. Air quality is the narrower term characterizing 
the impact of the chemical composition to human organism. Chemical weather, analogously 
to meteorological weather, characterizes multi-scale distributions and variabilities of gases 
and aerosols at different time scales in light of their impacts on human health, ecosystems, the 
meteorological weather, and climate. 

Atmospheric lifetime. 
A mass budget conservation law in any imaginary volume of air at all scales is the 
fundamental physical principle: 

AccumRemovalEmissionOutflowInflow =  −+−

( 1) R
dt
dQ

outin

outin

EFF −+−= )(  

Stationary condition: 

( 2)  RFEF +=+

If some amount of a substance is present, one can introduce a formal characteristic time 
needed for removal of this amount (assuming that the removal rates are stable): 

( 3) 
RF

Q
EF

Q

outin +
=

+
=τ

dzdydxgdydxzpdzzp

 

Note that, contrary to relaxation time introduced in theory of differential equations, the 
atmospheric life time depends on both production/loss mechanisms and the actual amount of 
species in the atmosphere. 

 

Atmospheric pressure and density variations along altitude 
Consider a small volume of air dx × dy × dz that is in balance with gravity forces. The 
pressure at the top and the bottom is p(z+dz) and p(z), respectively. The difference is to be in 
balance with the gravitational force due to mass of this volume: 

−+ ))()(( = ρ  

From where: 

( 4) gz
dz
dp )(ρ−=  
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From equation of state TRp ρ=  (R=8.31 J mole-1K-1), we finally get: 

( 5) gzpdp )(
−=

RTdz
 

or 

( 6) 
)(

1ln
zHRT

g
dz

pd
−=−=

Hzepzp /
0)( −=

, where H(z)=RT/g 

Since temperature in the atmosphere varies within a factor of two while pressure changes over 
many order of magnitude (10-fold in the troposphere alone), one can substitute T(z) with 
some mean value to get a characteristic height scale of the atmosphere. For such a constant H, 
the pressure drops exponentially:  

( 7)  

If mean tropospheric temperature of 253 K is taken, H=7.4 km.  

 

Lagrangian and Eulerian coordinate systems, total and partial 
derivatives  
The formal derivations of the physical fundamental laws (conservation of mass as the most-
important for our purposes) requires consideration of small (infinitesimal) volumes of air with 
imaginary boundaries delineating the volume. In Lagrangian coordinate system this volume 
(approximately) follows the path of the air parcel where the volume is located. The volume 
contains ‘marked air particles’, which are always the same but exhibit the influence of varying 
in space external conditions. In Eulerian coordinate system, the control volume is fixed at the 
surface while the ‘air particles’ flow through it.  

A rate of change of some field variable (e.g. concentration) following the parcel motion is 
called total derivative. A rate of change of the variable at the fixed point is called local 
derivative, which is actually just a partial derivative over time taken at a specific place.  

To derive the relation between these two derivatives, let’s consider a concentration c, which is 
taken in Cartensian x-y-z coordinates. For a given air parcel, its position will be a function of 
time x=x(t), y=y(t), z=z(t). Following the parcel, c is seen a function of only time, so its 
variation is a “true” or total derivative of time: dc/dt. To relate the total derivative of 
concentration and its fixed-point local derivative, let’s assume that at the point 
c(x0,y0,z0,t0)=c0. Then after the parcel has moved to x0+δx, y0+δy, z0+δz, t0+δt, the 
concentration will change to c0+δc with δc that can be expressed via Taylor series as: 
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Dividing with δt and noting that the δc is the total derivative following the parcel motion, we 
get: 
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Setting w
dt
dzv

dt
dyu

dt
dx

≡≡≡ ,,  and regrouping, finally obtain: 
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Hence, the total derivative of a species concentration along the trajectory of the air parcel 
motion consists of partial derivative of the concentration due to internal processes and the 
contribution of the transport term. 

The same equation for the total derivative can be obtained from a chain differentiation rule: 

c
t
cw

z
cv

y
cu

x
c

t
c

dt
dz

z
c

dt
dy

y
c

dt
dx

x
c

t
c

dt
tzyxdc

∇•+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= U),,,(  

 

Mass conservation law. Continuity equation 
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Figure 3. An illustration of the mass conservation law 

 

Let’s consider a small volume of air δx × δy × δz. Let this volume contains some tracer 
substance with the mass confined within the volume M and concentration varying in time and 
space c(x,y,z,t). Then the mass conservation law at a point r0=(x0, y0, z0) would require that a 
sum of emission E(r0) per unit volume minus sinks R(r0) per unit volume plus the difference 
between the in- and out-flow of the substance is zero. For one-dimensional case and x-axis 
directed along the wind speed, this yields: 
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Dividing ( 9) with δx δy δz and setting δx→0, δy→0, δz→0, δt→0, one can obtain the mass 
conservation law for one-dimensional case in differential form:  
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An extension to 3-D case reads: 
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In tensor notations, this cornerstone equation can be written as: 
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Comparison of ( 11) with the total derivative formulation ( 8) leads to equation for the total 
derivative over time (along the air parcel trajectory): 

( 13) REcREccc
t
c

dt
dc

−+•∇−=−+∇−∇=∇+
∂
∂  = )()()()( uuuu

Equations ( 11) and ( 13) are the forms of the continuity equation written for the particular 
tracer substance. It also describes the transport and often called as transport or dispersion 
equation for the tracer. 

The same continuity equation can be evidently written for air density itself, with emission 
sources and removal processes equal to zero: 
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( 15) )()( uu •∇−=∇+
∂
∂

= aad ρρρ ρ  aatdt

The form of continuity equation for air density ( 14), ( 15) represents the approximation of a 
compressible air with non-uniform density distribution.  

For many dispersion problems a simplified consideration under the incompressible air 
assumption is entirely sufficient. Under such consideration, volume of a selected air parcel 
does not change in time, thus having 0=∂ta∂ρ  and the continuity equation for air turning 
into: 

( 16) 0)()()( = ∇ =•∇+∇ uuu aaa ρ ρρ  

Even further simplification can be sometimes possible in the problems confined into the 
planetary boundary layer where constant uniform air density distribution can be a reasonable 
assumption: ρa=const. This turns the continuity equation for air into the simplest form. The 
air mass conservation then requires the solenoidal wind field, i.e. zero wind divergence: 
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( 17) 0)( =•∇ u  

However, most of problems require accurate representation of processes in thick vertical 
layers. In this case the air density cannot be considered uniform and at least its vertical 
variability has to be considered (incompressibility assumption still holds reasonably well in 
most cases). To represent the corresponding variation of the tracer concentration, it may be 
then convenient to introduce the mixing ratio of the tracer:  

( 18) ctraceramount _

atotalamount ρ_
q ≈=  

Then, the dispersion equation for the tracer can be written for mixing ratio: 

( 19) )())( uu •∇−∇+
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a qqq
t
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Substituting the continuity equation for air ( 14) into ( 19) and dividing the result with the air 
density, we obtain the transport equation expressed via the tracer mixing ratio: 

qq REq
t
q

−+∇−=
∂
∂ )(u( 20)  

Here Eq and Rq are emission sources and removal terms expressed in the mixing-ratio units: 
ER=E/ρa, RR=R/ρa. 

The same equation in tensor notations will be: 
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Importantly, there is a difference between the transport equations for concentration ( 11), ( 12) 
and the same equation written for the mixing ratio ( 20), ( 21). The additional term •∇

',' cCc

c  
in the concentration equation represents the impact of the wind divergence onto the tracer 
concentration. Since this term has the same impact on air density, it cancels out when 
substituting the air continuity equation. Formulations become identical only under 
homogenous air density assumption. 

 

Mean motion and turbulence 
The transport equations for concentration ( 11), ( 12) and for mixing ratio ( 20), ( 21) have 
been derived from the mass budget considerations, which are fulfilled at every time moment. 
Respectively, wind used in the derivation is the “instant” wind. However, in real conditions 
such consideration has the well-known problem since the flows are always turbulent. To take 
this into account, the standard procedure of Reinolds decomposition is used to split the instant 
wind into “mean” wind U and “fluctuation” u’. Similarly, the concentration is split to mean C 
and fluctuation c’ components: 

( 22) = + = +uUu  
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For u’ it is assumed that it is a stochastic process with zero mean. Transport equation ( 11) 
then can be split into mean and fluctuation components. 

( 23) REcC
t

cC
−+++−∇=

∂
+∂ ))')((()'( u'U  

Opening-up the brackets, taking the average and remembering the zero mean of the 
fluctuations, we obtain: 
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In tensor notations:  
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Strictly speaking, in real conditions we do not have any ensemble of the realizations of the 
wind and concentration fluctuations. Instead, one has to assume the ergodicity of the 
processes and replace ensemble averaging with time averaging. Then the bars in ( 24) mean 
averaging over specific time period, sufficiently long to reach zero of the turbulence-related 
fluctuations but sufficiently short so that the variations of the mean wind and concentration 
can be neglected. Also, one has to assume that fluctuations of the concentration are much less 
than its mean value and its time derivative. This allows neglecting it in the left-hand part of 
the equation.  

One of the important consequences of the switch form ensemble averaging to time averaging 
is that the mean equation ( 24) is valid only “in-average” and, strictly speaking, is not suitable 
for treatment of instant concentrations or fluxes. 

Closure problem. 
Equation ( 24) has two variables to be determined: mean C and its fluctuation c’ (actually, 

'cu' ), which means that the system of equations is not closed. The value of C depends on the 
first-order term describing the covariance between the fluctuations of wind and 
concentrations. An attempt to derive the equation for 'cu'  can be made by subtracting ( 24) 
from ( 23), multiplying with u’ and averaging. For simplicity, let’s do the exercise in 1D case: 
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Already now the first term in the right-hand-side of ( 26) represents the second moment of the 
concentration fluctuations. Thus, an attempt the equation for the concentration contains the 
first moment of its fluctuations, the equation for the first moment contains the second one, etc. 
Therefore, under no circumstances we can obtain the closed set of equations. 

The chain of equations ( 24)/( 25) and ( 26) that expresses the dependence of lower moments 
on higher ones has to be broken at some point with an assumption that the higher-order 
moment depends somehow on the lower-order one(s). That would result in equal number of 
equations and unknowns.  

 

K-theory: first-order closure 
The most-popular closure approach is based on so-called mixing length theory, which 
involves physical (or mechanistic) interpretation of turbulence. 

Let’s consider a liquid moving along the x-axis with some feature (e.g. concentration) varying 
along y-axis. Let’s consider the turbulence phenomenon as a random relocation of parcels of 
the fluid across the main wind direction, i.e. along the y-axis (Figure 4). Such parcels, being 
relocated with some finite speed, keep their properties over some time and, consequently, 
over some distance (respectively denoted as ta and λa in Figure 4) and then mix back to the 
main liquid accepting its features at the new location. 

 

U

parcel a, t=t-ta, y=y2+λa

parcel a, t, y=y2

C

 
Figure 4. An illustration of the mixing length principle 

 

If a parcel a of a liquid is at y=y2+λa at time moment t=t-ta and then relocated to y2 during 
time interval ta, we obtain that the fluctuation of the concentration at the point y2 and time t 
will be the difference of the mean concentration at these two points - y2 and y2+λa: 

( 27)  ),(),(),(' tyCttyCtyc 222 aa −−+= λ

This can be expanded in Taylor series: 
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Let’s also assume the stationarity of the case to eliminate the time derivatives. Let also the 
value of λa be small in comparison with other characteristic scales of the flow, in particular, 
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the scales of substantial wind or concentration changes. Then we can neglect all higher terms 
in ( 28) and the concentration fluctuation becomes a function of mean field features and the 
mixing length λa: 

( 29) 
y
Ctyc a ∂
∂

= λ),(' 2  

Multiplying it by v’a the turbulent fluctuation in the y-direction associated with the a-eddy 
becomes: 

y
vcv a ∂

C∂
= λ'''  

After averaging over all the fluctuations, we obtain: 

y
Cvcv a ∂
∂
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av λ'To roughly estimate the term , let’s introduce the maximum distance over which the 

parcels maintain their features as L and the turbulence intensity as 2'ˆ v=υ . Then  

( 30) 
y
CK

y
CvLconstcv

∂
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Where const is some positive value reflecting the extent of correlation of the relocation 
distances and the wind fluctuations. Here the K proportionality is the eddy diffusivity for 
scalar, such as tracer concentration. 

The main physical value of this idea is that turbulent fluxes are now connected with the 
gradients of the mean fields and the transport equation will contains only one unknown 
variable – mean concentration C: 

( 31) Cc ∇−== Ku'F '  or: 
j

ijii x
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∂
C∂
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Substituting this term into ( 24) and ( 25) we obtain the well-known dispersion equation: 

RECC
t
C

−+∇∇+−∇=
∂
∂ KU )(( 32)  

or: 

RE
x
CK

x
CU

xt
C

j
ij

i
i

i

−+
∂

+
∂
∂

−=
∂
∂ )( ∂ ∂

( 33)  ∂

This form of the equation does not contain any more the small-scale characteristics, instead 
including the unknown “turbulent diffusion coefficient” or “eddy diffusivity” Kij, which, in 
general case, is a tensor with components that must be measured or somehow parameterized 
from empirical data. 
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In order to conclude the derivations, let’s convert the transport equation ( 33) into the mixing 
ratio terms. In order to do that one has to notice that speculations ( 27) - ( 30) and resulting 
assumption ( 31) are valid only when the density of the fluid is constant. Indeed, if the parcel 
after its relocation appears to be of different density than the surrounding liquid it will adjust 
its density by changing its volume much faster than the concentration approaches the 
equilibrium. It means that the tracer concentration in the parcel will be adjusted as well and 
with the same proportion as the density. Hence, for compressible liquid equation ( 27) should 
be written to the concentration weighted with the liquid density, i.e. for the mixing ratio: 

( 34) ),(),(),(' tyQttyQtyq 222 aa −−+= λ  

Here q’ and Q are mixing ratio fluctuation and the mean value, respectively. 

Then the K-theory main formula ( 31) becomes: 
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The final form of the transport equation for the compressible air will be: 
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The dispersion equation ( 35), ( 36) has to be accompanied with initial and boundary 
conditions, which can depend on specific problem and in comparatively general case can look 
like the following: 
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Here  is lateral boundary (western, southern , eastern and northern vertical planes limiting 
the domain), ΓH and Γ0 are the upper and lower domain limits, n is the normal vector starting 
at a domain border and directed outside, C0 is the initial distribution of the concentrations, 
C∂Ω  is the concentration distribution at the lateral domain boundaries; finally, vd is the 
proportionality coefficient with a unit of speed and usually called dry deposition velocity.  

A physical sense of the boundary conditions in ( 37) is that (i) inflow into the domain is 
dictated by the outside concentration distribution C∂Ω , (ii) outflow is free, (iii) there is no 
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exchange through the upper domain boundary, and (iv) turbulent diffusion flow at the lower 
domain boundary is determined by the vertical diffusion coefficient, dry deposition velocity 
coefficient and concentration at some near-surface level z0. 

The main weakness of the K-approach, as well as the mixing-length theory, is that the 
unknown terms describing the turbulent fluxes are replaces with unknown eddy diffusivity 
coefficient, which is a function of time, space, scale and even some model technicalities.  

Let briefly list the main problems associated with Kij. 

1. Since turbulent eddies are 3-D structures, there is no justification for assuming this 
tensor to be diagonal. It is rather an experimental result that in most practically 
important cases it can be taken diagonal without drastic consequences. 

2. Since the spectrum of turbulence is inhomogeneous, the actual values will depend on 
the scale of the problem and the model resolution. Indeed, the larger the model grid 
cell is the larger eddies are to be considered as unresolved turbulence and, 
consequently, the higher will be Kij. 

3. In presence of a horizontal or vertical wall the maximum size of eddies is limited with 
the distance to this wall, which leads to dependence of Kij on this distance.  

4. The eddy diffusivity even depends on the plume characteristics: the wider and longer 
plume includes larger eddies as turbulent motions inside the plume, thus its further 
expansion happens faster. 

5. Finally, the specific resolution of the dispersion, as well as meteorological, problems 
becomes “no-go area” (this, however, is a problem of all current parameterizations). 
These are the resolutions, which are too coarse to resolve explicitly e.g. the convective 
cells (a scale of ~1km) but too fine to put them entirely into subgrid processes. 
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Adjoint advection-diffusion equation 
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Outline of analytical approaches to solution of advection-
diffusion equation 
Current section will consider a couple of examples illustrating the ways to solve the 
advection-diffusion equation analytically and highlighting the role of its components.  

Uniqueness of the solution of ADE 
Before moving into this direction, one has to ensure that the solution is unique at least in some 
boundary conditions – and find out the limitations, if any. 

Let assume that we have two solutions C1 and C2 for the equation ( 36). Then let ϕ=C2-C1 be 
the difference of these two solutions, which start from the same point, i.e. ϕ(0)=0. Assuming 
linearity of the chemical transformation term and noting that the emission term is independent 
on C and the same for both solutions, we end up with the following equation for ϕ: 
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Let’s now multiply it with ϕ and integrate over the considered domain and time period. For 
advection term, let’s also assume the density-independent continuity equation for wind: div 
U=0 and recall that for incoming flows through the boundary surface for both solutions are 
identical, i.e. this term will be zero for their difference. Then: 
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For turbulent diffusion term, let’s simplify the equation by assuming constant density: 
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Bringing together all terms, we obtain: 
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On the left-hand side, all terms are essentially non-negative and can be zero only if ϕ itself is 
zero, i.e. the two solutions are identical. Therefore, it is enough for the uniqueness of the 
solution to have the boundary conditions, which make the right-hand-side term zero for ϕ=0 
and negative otherwise. 

For the boundary conditions ( 37), this term becomes: 
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Substituting it into ( 39) we obtain that the only ϕ satisfying the equation is zero, i.e. the 
initial and boundary conditions ( 37) lead to unique solution of the dispersion problem. 

One has to keep in mind numerous assumptions and simplifications made during the 
derivation. Some of them, such as constant-density requirement can be lifted up at a price of 
somewhat bulkier derivation. 

 

Examples of analytical solution of ADE 
Analytical solution of ADE in general case is impossible, therefore a set of strong 
assumptions has to be made in order to obtain the solution for some specific cases. Below we 
consider a few such cases in order to illustrate the meaning of each of them. 

Example 1. 
The simplest case to consider is pure advection of a passive tracer with zero diffusion term 
and constant wind speed, along which we then direct the x-axis. Let also the boundaries be far 
away, so that the boundary conditions do not affect the solution at the interval considered. The 
problem becomes one-dimensional with the initial condition defined for t=0: 
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Since wind component u is constant in time and space, one can consider the characteristic line 
utx =∂∂

)(),0(),( 0000 xCxCutxtC

, i.e. x=ut+x0, and, following the method of characteristics, look for the solution of ( 
40), which must constant along this line:  

( 41) = =+ .  

From ( 41), it is seen that the solution of the pure-advection equation with constant wind and 
given initial conditions represents, in fact, a move of this initial shape along the x-axis with 
the speed u – as one would intuitively expect. 

 

Example 2. 
Let now consider both advection and diffusion terms, still with constant parameters in both 
time and space and with a single-point non-zero initial condition. Again directing x-axis along 
the wind, we obtain the following form of ADE: 
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Let’s look for the solution as: ),(),(),(),( ztcytcxtctC zyx=x . Then: 
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Let’s look for a solution via Fourier transform: 
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Solution for ( 42) is straightforward: 
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Inverting the transform, we obtain: 

∫
∞

Σ= αα α detxtc xi
x ),(1),(  

∞−π2

Deal with the exponent first by completing the square: 

tK
utx

tK
utxitK

tK
utx

xxxx
xx

xx

4
)(

2

4
)(

2

2

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

=
−

−

α

tK
utxutxitKutxitKixtiuK
xx

xxxxxx 4
)()()()(

2

2
222 −

+−−=−−=−+ ααααααα

 

Denoting αηαη dtKd
tK

utxitK xx
xx

xx =
−

−= ,
2

, we can write the solution as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−= ∫

∞

∞−

−

tK
utx

tK
C

de
tK

utx
tK

C
xtc

xxxxxxxx
x 4

)(exp
24

)(exp
2

),(
23/1

0
23/1

0 2

π
η

π
η  

 21



Evidently,  
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Then the final solution becomes: 
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The formulations ( 44) constitute the simplest form of so-called Gaussian model equations. 
Such models were the first ones used in numerous dispersion applications where the 
assumptions behind the derivation are more or less fulfilled. The most-crucial ones are the 
requirements of constant wind and eddy diffusivity terms, which can be considered reasonable 
only at local scales. Numerous modifications of the assumptions expanded the range of 
applicability of the Gaussian formulations to more realistic profiles of eddy diffusivity and 
varying wind. However, the applicability of such systems for multi-source situation with 
complicated chemistry is very problematic due to still-extreme level of simplifications and 
inevitable linearity requirement. Another assumption, which cannot be lifted is the stationarity 
of the pattern. 
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Approaches to numerical solutions of ADE 
For atmospheric composition tasks, by far the most widely used approach is direct numerical 
solution of the dispersion equation. The rest of the course will be dedicated to this topic. 

Before starting the in-depth analysis, let’s attempt to solve seemingly the simplest part of the 
problem – pure advection equation for a passive tracer ( 40). For the explicit algorithm: 
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and for the implicit algorithm: 
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In the above basic discretization schemes, super-script indices correspond to time axis and the 
sub-scripts ones – to x-axis. To analyze the quality of the obtained solution, let’s expand C in 
Taylor series: 
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Substituting ( 47) into ( 45), we obtain the equation for concentration for the explicit scheme 
(noting that sub-script i-1 corresponds to -Δx and super-script k+1 – to Δt): 
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Differentiating the original equation ( 40) with t, one can obtain that: 
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Hence, the advection equation after discretization turned into advection-diffusion equation 
with the diffusivity term dependent on both physical parameter u and numerical setup. Its 
comparison with typical eddy diffusivity values can highlight the level of the problem. For 
normal atmospheric conditions in middle latitudes, Kxx<100 m2sec-1, u~10 m sec-1. Typical 
setup of a regional-scale dispersion problem operates with Δx~10km=10,000m, 
Δt~10min=600sec. The artificial numerical viscosity coefficient will then be ~5*104 m2 sec-1, 
i.e. 100-1000 times stronger than any realistic turbulent diffusion. It is equal to zero only in 
case Δx=uΔt, which in realistic cases can be fulfilled only occasionally. 
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More, this diffusion coefficient  can be both positive and negative. In 
the latter case, the problem is ill-posed according to Hadamard stability criterion, which 
means that the solution is unstable with regard to any changes in the initial conditions.  

2/)( 2 tuxuDnum Δ−Δ=

The threshold at which Dnum changes its sign is when the Courrant number 
1)//( =ΔΔ= txuCourant .  

The scheme is unstable for any u<0, which requires re-orientation of the x-axis so that it is 
always co-directed with the wind. 

The situation somewhat improves for implicit scheme ( 46) where stability is kept for any 
u>0 but it for u<0 again the re-orientation of the axis is inevitable to keep the scheme 
stability: 
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Note that in both ( 48) and ( 49) adding the “true” diffusion term does not change anything 
because this term is much smaller than the numerical terms. 

Other discretization schemes are possible. 

Symmetrical scheme: 
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seemingly gives the second-order approximation for the derivatives. However, its application 
in the time-explicit algorithm leads to a disaster (S&P, p.1130) because the obtained 
algorithm is unstable for any model steps. 

 
Figure 5. Example of numerical solution with symmetrical discretization ( 50) after 50 time steps. Wind blows 
from left to right, initial squared-shape plume position is from x=1m and x=2m. 
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Indeed, substitution of Taylor expansion into ( 46), ( 50) leads to: 
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which is unstable (seen from negative numerical diffusion term). 

Another semi-implicit discrete algorithm, second-order in space and time, is the Crank-
Nicolson scheme, which mixes-up the t and t+Δt time moments: 
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The discrete equation then reads as: 
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The Crank-Nicolson parameter μc is usually taken as 0.5, thus mixing the present- and past-
time concentration values into single time-step computations.  

More schemes involve various interpretations of the first and second derivatives. An extensive 
review can be found in the course literature. 

However, all direct-discretization schemes suffer severely from numerical viscosity or 
similar-type problems, eventually failing to reproduce even the simplest shapes (Figure 6). 

 
Figure 6. An example of performance of a good scheme of A.Bott. Task: rotation of two separated single-grid-
cell non-zero concentration fields. 

 

 

Physical meaning of the numerical viscosity is demonstrated by diagram in Figure 7. 

 

 25



u=0.2 x Δ τ -1 In “reality”

0=T0 0=T0

1

1 1

2 2
3 3

4 4

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

12 23 34 4

t tτ τ2τ 2τ3τ 3τ4τ 4τ5τ 5τ6τ 6τ7τ 7τ

ϕ ϕ

t=T +0 τ

t=T +20 τ

In idealized grid scheme

 
Figure 7. An illustration of the principle of numerical viscosity. 

 

 

Options for further development of the discrete algorithms 

- more and more sophisticated discretization schemes 

- semi-Lagrnagian schemes: determine the transport distance and direction at each time 
step via single-time-step backward trajectory from the destination point that points at 
the location of the air mass coming to this point at the time t+1. Then the 
concentration is interpolated from the source place to the destination one – taking 
surrounding into account. 

- finite-elements methods where a few grid cells are approximated with prescribed 
analytical function – usually some polynomials. A set of discrete equations is then 
derived to minimize the error of representation of actual pattern with these piece-wise 
approximations. The most-popular approach here was suggested by Galerkin, who 
required that the error of such approximation be orthogonal to the piecewise 
polynomial space itself. 

- flux schemes are the variations of the finite-difference methods when the polynoms 
are used for evaluation of the fluxes at the borders of the grid cells. 

 

The main features of the advection schemes 

- global mass conservation 

- local mass conservation 

- positive definition of the scheme (appearance of negative concentration) 

- numerical stability and robustness to errors in initial and boundary conditions 

- phase error (error in the propagation speed of some characteristic elements of the 
pattern) 

- non-monotonicity of the scheme 
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Specific additions suggested by M.Galperin in his works 

- information-based approach and cause-result principle. In the advection term the 
information is spread with wind, so that a cell, which does not “know” about the 
coming or passed plume must not be disturbed by the scheme. In ideal case, such 
approach eliminates numerical viscosity. 

- global consideration. The scheme should “see” the whole computation domain rather 
than a few adjacent cells. The Courant criterion for the scheme stability is then 
modified into uD/Δt<1, where D is the size of the domain. 

- advancing the subgrid information utilization (essentially, already considered by the 
semi-Lagrangian and flux schemes) that keeps and preserves the pattern finer than the 
formal grid spacing. 

 

Discrete adjoint equation vs discretized adjoint equation 
Considering the ways of solving the adjoint dispersion equation with non-ideal advection-
diffusion discrete algorithms, one has to keep in mind that numerical solution of the adjoint 
equation (???eq ref???) will not satisfy the adjointness requirement (????eq ref???). Hense, 
the duality of forward and adjoint problems will be lost. Since this duality is one of the 
strongest motivations to consider the adjoint formalism, one might wish to keep the exact 
adjointness of the numerical solution. Such choice forces selection of a specific numerical 
algorithm for the adjoint equation discretization, which depends on the forward algorithm. 

Consider a general form of the forward equation: 
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Here A is a linear operator in the appropriate Hilbert space with the corresponding scalar 
product. 

Its discrete form it will read as: 
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Here D is a diagonal positively defined matrix = . In the simplest case di=Δx, 
i=1..n. 
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With regard to Φ2 space, the equation ( 54) can be written in the condensed form: 
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Multiplying ( 55) with ϕ~ , we get: 
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Expanding the product term-by-term: 
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We end up with the equation: 
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Let’s require that ϕ~  satisfies the equation: 
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We end up with the known duality statement, this time for discrete problem: 
~ ~,(),( ϕϕϕϕ  

 

Remark on dynamic-adjoint formalism 
In many cases, exact formulation of the discrete matrix Ah is cumbersome or simply non-
existent. Instead, the advection equation solution can be represented via an algorithm with 
possible logic forks and joints, resolving some implicit problems, etc. In such cases the 
application of ( 57) formulations is impossible. Instead, one can note that the solution of 
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adjoint equation for the given point in space and time is the sensitivity of the forward solution 
to variations of the emission intensity. Indeed, from the main duality equation, obtain: 

( ) ( ) )*,(*,,
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EEE =∇=∇=∇
==

 

Where e is a unit matrix. Here we used an independence of both sensitivity p and sensitivity 
distribution C* from emission. If then one puts )()( 11 ttxxp −−= δδ , the sensitivity of the 
concentration at this point and at the particular time will be the solution of the appropriate 
adjoint equation: 

( 58) )()(**),*,(),( 11 ttxxCLeCxtC
−−== 11E∂

∂ δδ  

This is another fundamental feature of the adjoint equation: it describes the sensitivity of the 
forward equation results to uncertainties in the input data. With little efforts, the equations 
similar to ( 58) can be written for model internal parameters and other external data. We will 
see its practical application further in the data assimilation problem. Due to duality, the 
sensitivity of the adjoint solution is evidently the solution of the corresponding forward 
equation. 

Construction of adjoints for the specific realizations of the numerical algorithms can also 
benefit from ( 58). Indeed, if somehow the sensitivity of the forward solution is extracted 
from the code, it will be the solution of the adjoint equation for the given time and space. 

 

Elements of splitting algorithms 
So far we considered the pure-advection equation. Extension to the other processes requires 
solving the following problem. If a finite-difference scheme is applied to the basic equation, 
the results will be very poor and extremely costly. Creation of a separate advection scheme, a 
diffusion scheme, a chemical scheme, etc requires a methodology of their combination and a 
proof that the resulting field will have some connection to the solution of the original 
equation. The numerical methods dealing with the problem comprise an own direction in 
numerical mathematics called splitting algorithms. 

The idea of the time splitting is based on the separate consideration of each cause of the time 
derivative of the concentration at each time step: 

( 59) ∑=∂
∂

pr
pr CA

t
C )(  

Here a set of Apr represents a set of processes contributing to the overall change of the 
concentration. However, solving the equation in such a form using global time-space finite-
difference discretization would lead to prohibiting costs of the simulations. Therefore, at the 
next step of splitting suggests entirely separate consideration of each of the processes with 
subsequent summing-up their impacts: 
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( 60) 
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Note that this formulation allows flexible global time step for mixing-up the specific 
contributions, while individual time steps for solving the process-related equations can vary 
depending on the process nature and time scale. 

)()( tCttCC −In discrete case, the representation of time derivative via = + ΔΔ  creates two 
more problems. Firstly, the individual operators can be applied in parallel: 

prprpri _ NprittCAC ,1_,)( =Δ=Δ  

or sequentially: 

CtCCttCAC )(,')( 1111 Δ+=Δ=Δ

prpripripripripripri NpriCCCtCAC ,2_,,' _1__1___ =Δ+=Δ=Δ −−

 

or in a mix. The results will evidently be different and both schemes have their positive and 
negative sides. 

One of popular approaches is so-called symmetric operator splitting when the sequence of 
operators is applied twice with half-time-step and the second time it is applied in the opposite 
order: 
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This, however, also has own weaknesses. 

Let’s consider a general case of the operator splitting ( 59) - ( 60) for two operators A1≥ 0 and 
A2≥ 0. Let the general evolution-type equation is presented in a finite-difference form: 

fAA
t

=++
∂
∂ ϕϕ )( 21( 61)  

The A1 and A2 are matrices, both non-negatively defined, with coefficients dependent on time. 
Further we assume sufficient smoothness of all the coefficients and solutions. Let’s consider 
their representation at a time interval tj ≤ t ≤ tj+1: 

( 62)  kkk
ki

k
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Writing down the sequential Crank-Nicolson’s algorithms for these two operators, we obtain: 
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( 63) 
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The unknown intermediate variable  can be excluded, which leads to the direct 
connection of discrete concentrations at k-th and k+1-st time steps. From the first equation: 
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Substituting it to the second one, obtain: 

( 64) 
kkkkk tttt ϕεεεε ⎟

⎠
⎞

⎜
⎝
⎛ Λ−⎟

⎠
⎞

⎜
⎝
⎛ Λ+⎟
⎠
⎞

⎜
⎝
⎛ Λ−⎟

⎠
⎞

⎜
⎝
⎛ Λ+= 1122 2222

kkkk tt ϕεεϕ

ΔΔΔΔ

=⎟
⎠
⎞

⎜
⎝
⎛ Λ

Δ
−⎟

⎠
⎞

⎜
⎝
⎛ Λ

Δ
+=

−−

+
−

+

11

2/1
2

1

2
1

22
 

In order to get the order of approximation, one has to open-up the brackets: 
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If Λ1 and Λ2 commute, the approximation will be of the second order with regard to time. If 
not, the first order. 

However, the requirement of the matrix commutation can be eliminated if the two-step 
scheme is considered for symmetrical 2Δt period tj-1 ≤ t ≤ tj+1. The idea of the symmetrization 
is based on sequential application of the finite-difference algorithms ( 63) - ( 64). 
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Again eliminating the intermediate variables, it is straightforward to obtain the operator 
connecting k-1-st and k+1-st time steps: 
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Again opening-up the brackets, it is straightforward to see that: 

( )( ) 1221 ...22 −+ +ΛΔ+ΛΔ−= kkkk tt ϕεϕ  

regardless the commutation of the operators. Thus, if the algorithms ( 63) - ( 64) are applied 
sequentially in reverse order, over a double time step we obtain the second order of 
approximation with regard to time. 

Without going into further details, one can extend the considered case to arbitrary number of 
operators. If they are applied sequentially and then the second time in reverse order, the 
resulting solution will have the second order of accuracy with regard to time. 

It is also important to say that the above formulations pose only quite general requirements to 
the individual discrete operators. Therefore, it does not matter how exactly each of the 
processes is represented in the discrete model. As long as they are positively defined and 
sufficiently smooth, their sequential application will result in reasonable formulations for the 
time derivative for the overall concentration field. 

 

Example of implementation of numerical algorithms 
In this section we outline the solution of the diffusion equation along the vertical: 

( 65) 
z
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∂

With boundary conditions ( 37). 

One of the most-significant problems appearing while considering the vertical dimension is a 
large variety of spatial scales involved. Thus, near the surface the typical length scale is 
height, while aloft this parameter does not play a significant role. Therefore, all atmospheric 
models have strongly inhomogeneous vertical coordinate systems, which have to be taken 
into account in the discrete algorithms. Let’s consider the classical scheme with n layers with 
thicknesses hi, central points zi, and distances between the central points Δzi. (Figure 8). Note 
that for such scheme, the thickness of layers and the distance between their centre points are 
connected via:  )(5.0 hhz +=Δ

Let the diffusion coefficient Kz is represented at the borders of the layers: Kz(i),i=0..n. Let 
also represent the vertical derivative in the center of the level i as follows: 
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Then discrete form of ( 65) will be written as follows: 
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Figure 8. A scheme for vertical discretization of the advection-diffusion equation 

 

In the widely used Crank-Nicolson algorithm, we assume that with regard to time 
, where the k index is running along the time dimension. 2/)( 1++= k

i
k
ii ϕϕϕ

In some models, the diffusion coefficient Kz can be directly available at half-levels i+1/2, i-
1/2. However, in many cases it has to be obtained from the values at the centre of the layers. It 
should be stressed that simple interpolation of this parameter leads to unphysical results, such 
as violation of the local mass conservation. Correct averaging rule has to be derived keeping 
the conservation laws in mind. 

Let’s derive the correct representation of the vertical diffusion coefficient in a general discrete 
scheme. Let Kz be known as a continuous function of height z: Kz(z). Let some finite-
thickness layer Δz=z2-z1 be free from local sources and sinks of a tracer. Let also the mean 
vertical wind is zero, so that its concentration is determined exclusively by diffusion. Then, 
following the K-closure formulations, the flux from z1 to z2 must be constant: 
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By definition of the mean diffusion coefficient: 
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Noting that Fmean=F(z)=const throughout the layer, one can integrate ( 67) from z1 till z2: 
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Finally obtaining: 

( 68) 
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From equation ( 68) one can notice that even a thin layer with small eddy diffusivity has a 
strong blocking effect – due to inverse Kz under the integral. Therefore, if the input data and 
the model formulations allow, it is always advisable to use the continuous definition of Kz 
since the discrete approximations always have a chance to miss such a layer.  

If the Kz values are available only at zi points, the averaging ( 68) turns into summation of 
reciprocals: 
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Here z is the point to which the mean coefficient is to be applied. 

With Ki+/-1/2 defined, one can approach solving the diffusion equation ( 66). To illustrate the 
application, let’s consider the implicit first-order scheme with regard to time: 
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Here we assume that the values of K are known also for the future time, thus leaving only ϕ as 
the unknown. Time index at K is then omitted for the sake of compactness of the derivation. 

Let’s define the matrix A as follows:  
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( 69)
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It is easy to see that the matrix A is the three-diagonal matrix, which first and last rows 
determine the boundary conditions. Then ( 65) turns into its discrete form: 
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For implicit scheme it will read: 
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And its solution will be: 
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Here ε is a unit matrix. Note that (ε -ΔtA) is also a three-diagonal matrix. For its inversion, an 
elegant swift method has been developed. In order to demonstrate it, let’s rename the 
elements in ( 69), so that the sub-diagonal elements will be ai, diagonal be bi and above-
diagonal be ci: 
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Then, let us introduce two new variables via recursive formula: 
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Both q and p can be computed directly following the recursion, which constitutes the forward 
part of the swift cycle. The return part gives the new concentrations: 
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