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Basic course of tropospheric composition modelling 

Part 2 

 

Chemical transformations in the troposphere 

Current section provides an outline of construction of the chemical transformation mechanism 

for 3-D Eulerian dispersion models and shows a few simplified examples of the tropospheric 

chemistry branches. 

 

Basics of chemical kinetics 

Considering the classification of chemical reactions, textbooks usually separate three types of 

the transformations.  

One-body first-order reaction involves only one substance, which is gradually transformed 

into another one with the speed independent on the actual concentration of either of the 

agents: 

( 1) ][][ BA K⎯→⎯  

Here [A], [B] are concentrations of the agent and the product. In differential form it looks like 

the following: 
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Examples of such reactions are: radioactive decay, photolysis, self-degradation of unstable 

species, etc. 

The two-body second-order reaction depends on concentration of both agents:  

( 3) 

]][[
][

]][[
][

]][[
][

][]][[

2

2

2

2

BAK
dt

Cd

BAK
dt

Bd

BAK
dt

Ad

CBA K

=

−=

−=

⎯→⎯

 

Majority of the atmospheric reactions can be written in this way. 

A three-body third-order reaction still transforms the agents A and B to agent C but it consists 

of two steps. During the actual conversion an excited atom of C is produced, which then 

needs the presence of the third molecule – usually air, which can take the excess of energy 

and stabilise the molecule. In absence or lack of the third body the excited molecule falls apart 

back to the original agents. 
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An example of such reaction is, for instance, the final stage of the gas-phase oxidation of SO2 

to SO4
=.  

Dependencies of the reaction coefficients on the external conditions can also be of different 

types and can be described using several theories (leading to different formulas).  

Collision theory 

Within the scope of collision theory, the reaction happens when the molecules of the reagents 

collide with energy sufficient to surpass the energy barrier, called as an activation energy. 

Probability of the collision is proportional to the agent concentrations, while the probability of 

the specific molecule to have the energy above the given threshold E, in accordance with the 

Maxwell molecular-kinetics theory, is exp(-Eact /RT), where R is the universal gas constant 

and T is temperature. Therefore, the collision theory for the bimolecular second-order 

reactions leads to the equation ( 3) with the rate coefficient represented via Arrhenius law: 

( 5)  

where K298 is the rate at temperature 298K. 

Collision theory provides good approximations for large fraction of atmospheric reactions but 

sometimes its too simplistic considerations can lead to large errors in assessing the reaction 

rates and their dependence on temperature and agent concentrations. 

Transition state theory 

Let’s consider the second-order reaction, which results in certain re-arrangements in parts of 

the agents, essentially leading to creation of the new substances. Let one of the agents be two 

tightly bounded substances or radicals: B-C. The reaction then results in breakout of this 

chemical bond and formation of another one with the agent A: 

CABBCA +→+  

If both A and BC are molecules, the energy barrier appears far too high and such reactions do 

not play any role in the atmosphere. However, if one of the agents is a radical, barrier appears 

substantially lower, so that the reactions between the free radicals and molecules play crucial 

role in the atmospheric chemistry. 

Considerations within the scope of the transition theory assumes that the agents first create an 

activated complex, also called as transition state, which then breaks out either to the original 

or new reaction products. The breakout to original products is then in equilibrium with the 

complex formation reaction: 

( 6) CABABCBCA +→+ +
 

Its rate depends on both collision probability and the probability of the activated complex to 

break into the products rather than into original agents: 
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Here S is the change of the entropy: )()()( BCSASABCSS −−= + , which characterises 

the electronic re-arrangements needed for the formation of the activated complex. Should S 

be independent on temperature, the equation ( 7) turns again into Arrhenius dependence ( 5). 

Pseudo-steady-state approximation. Termolecular reactions. 

Another important type of reactions starts from activation an agent via its collision with the 

third body (one of molecules of air). Activation is followed by either its second collision with 

the third body and release of the excess of energy, or a breakout to new products. Similarly, 

two agents A and B can form an excited product AB+, which stabilization is provided via 

collision with the third body M: 

( 8) MABABMBA KkK bf +⎯→⎯⎯⎯⎯ →++ + 211 ,
 

Corresponding coefficients for initial reaction, release of energy with stabilisation, and the 

breakout back to initial products areK1f, K1b, and K2, respectively. 

Writing them in a differential form, one obtains: 
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The pseudo-steady-state theory assumes that the activated intermediary AB+ is formed and 

destroyed so fast that its concentration is essentially always in dynamics equilibrium and thus 

stationary. This assumption, requires the time derivative in the second equation in ( 9) be 

zero, which leads to  

]][[][]][[ 211 MABKABKBAK bf
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Then the concentration of the intermediate activated substance AB+ will be: 
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Substituting it into the first equation in ( 9) and noticing that the rate of the generation of the 

final product in pseudo-steady-state is equal to the rate of consumption of the initial agent A, 

obtain the overall rate for the reaction: 
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This means that the overall reaction rate depends on concentration of the background species 

M. In case of very high concentration of M, the value of K2 in denominator can be neglected, 

which leads to M-independent reaction rate bf KKK 121 / . To the opposite, in case of low M 

concentrations, the K2 in denominator is dominant and the reaction rate becomes linearly 

proportional to [M].  
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The equation ( 10) is called the Lindemann-Hinshelwood rate expression, which is based, in 

particular, on the assumption that one single collision with the third-body molecule is enough 

to take out the excess of energy. In real life, one single collision with the third body is rarely 

enough to stabilise the reaction product. Therefore, in 1983 Troe developed an experimentally 

better-fitting equation for the rate. Using more common notations for the coefficients, it can 

be written as: 
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This modified form fits well most of the experimental data. 

Note that termolecular reactions often exhibit decreasing rate with increasing temperature. 

The higher the temperature the bigger the kinetic energy of the reactants and the larger the 

internal vibrational energy stored in the intermediate excited product. Hence, the probability 

of its breakout to initial constituents is also higher.  

 

Examples of simplification of the chemical reaction chains 

 

Simple examples allowing for straightforward simplifications of the equations are: 

1. If one of the two sequential reactions is substantially faster, its dynamics can be 

neglected and the final products considered as created instantly. 

2. If one of the two agents is in substantially larger concentrations, the reaction order can 

be reduced by including its concentration into the rate coefficient.  

3. Life time of the agent in lack is defined via the first-order differential equation. 

Less trivial is the concept of chemical family. Let’s consider three species A, B, C, which are 

connected via the following reactions: 

( 12) CABBA KKK bf ⎯→⎯⎯⎯⎯ →+ 3
,

 

Let also the forward and inverse reactions rates Kf and Kb are much higher than K2. In this 

case, A and B are practically always in equilibrium and can be considered together as a family 

Ax. Taking into account the sources of both A and B, one can write down the equations for all 

the species: 
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Solution for stationary concentrations of A and B evidently leads to: 
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In absence of the sources, fast rates Kf, Kb of the reversible reaction imply that Kf[A]  Kb[B]. 

It is also evident that the overall equilibrium of the family Ax implies balance of sources and 

the sink, i.e. K3[B]=SA+SB.  

 

Examples of chemical transformation chains in the troposphere 

 

Major oxidants in the atmosphere: OH, O3, NO3, HO2 

The most important oxidants in the troposphere and, more generally, in the atmosphere, are 

OH and O3, with significant contribution of NO3 at might time and HO2 taking part in the 

ozone formation. Essentially, these four agents are responsible for most of the chemical 

transformation processes in the atmosphere.  

Main pathway of OH formation is via ozone photolysis with the following hydrolysis of the 

excited oxygen atom. 

( 13) 

OHOHDO

ODO

ODOO

M

h

2)(

)(

)(

2

1

3

1

2

1

3

→+

⎯→⎯

+⎯→⎯ 

 

The fraction of the excited O(1D) atoms forming OH is quite small. Thus, at normal pressure 

and relative humidity RH=50% only 10% of the photolysed ozone leads to formation of OH 

radical, the rest falls back to ozone. Ozone photolysis rate at the surface in midday at the 

tropics in clear-sky conditions is about 5 10-5 sec-1. 

Other regionally important sources, especially in the polluted atmosphere, are photolysis of 

nitrous acid HONO and hydrogen peroxide H2O2:  

( 14) 
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The above reactions, being probably the most important sources of OH, are not the only ones 

that are responsible for its formation. Due to their high reactivity, concentration of the OH 

radicals in the atmosphere is so low that virtually any single oxidation reaction involving OH 

would result in their almost immediate disappearance. Let’s consider the production chain ( 

13) and the loss of OH for the oxidation of methane CH4. The methane concentration is quite 

stable and uniformly distributed gas. Time trend exists but amounts for a few % per year – the 

CH4 level has approximately doubled over the last hundred years. 

The methane oxidation follows the typical scheme: 

OHOCHOHCH 223

/T)exp(-1775. * 1.48e6,O

4
2 +⎯⎯⎯⎯⎯⎯⎯ →⎯+  
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where the reaction rate is given in [sec-1 mole-1 m3].  

Assuming the methane concentrations to be 1650 ppb ~ 70 mole m-3 and the oxidation rate 

at T=300K to be ~4 103 sec-1 m3 mole-1 one cam obtain the expected life time of OH with 

regard to methane oxidation: sec5.3sec)104*107(~ 135 −− . 

The reason why OH is not disappearing is that every reaction chain using it up is followed or 

preceded by another reaction forming either OH or HO2, which then reacts with NO or other 

agents returning OH radical. 

Since most of the OH formation processes are photolytic, it is important mainly during 

daytime, with night-time concentrations being about 100 times lower than those during day. 

Atmospheric transport of OH radicals is unimportant due to their extremely fast chemical 

cycling. 

 

The only known significant source of ozone in the troposphere is photolysis of NO2: 

( 15) 
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Ozone is a sufficiently long-living species, which can easily survive for several hours, which 

makes it one of the important night-time oxidants. 

 

The nitrate radical is formed in the reaction of NO2 and ozone: 

( 16) 2332 ONOONO +→+  

Due to its fast photolysitic decomposition, nitrate radical is present in substantial 

concentrations only during night time. 

 

Production chains of HO2 radical are numerous but generally include the reaction leaving an 

isolated hydrogen atom or HCO radical, which immediately react with oxygen forming 

peroxy radical: 

22

22

HOOH

COHOOHCO

→+

+→+
 

For example, photolysis of formaldehyde HCHO leads to intensive formation of HO2: 

HCOHHCHO h +⎯→⎯   

 

 

Examples of some major tropospheric chemical branches 

Sulphur dioxide 

The set of reactions starting from sulphur dioxide ultimately leads to formation of sulphates, 

along side with several other products. In typical conditions, the oxidation can follow via two 

pathways: gas- and liquid- phase oxidation chains. 

The gas-phase chain, as well as many other oxidation chains, starts from attack of OH radical: 
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Importantly, this chain demonstrates the cycling of OH and HO2, where the OH-consuming 

reaction is followed by the other one (fast!), which produces HO2, leaving the restoration of 

OH to another quick reactions with NO or other active agents. It is also worth mentioning that 

the presence of water is crucial for the final stage of the transformation branch. 

The heterogeneous chain starts from dissolution of SO2 in a water droplet of fog or cloud: 
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Upon dissolution, the mixture of SO2 H2O, HSO3
-, and SO3

= is oxidised by (i) ozone, (ii) 

oxygen, and (iii) hydrogen peroxide H2O2 dissolved in water. The processes are numerous and 

their detailed consideration is beyond this course. It is only worth mentioning that the liquid-

phase oxidation largely depends on pH of water and presence of catalytic agents, such as Fe3+ 

or Mn2+. 

The considered set of oxidation of sulphur dioxide is accepted to be largely responsible for 

acid rains and acid deposition environmental problem. 

 

Basic photochemical cycle 

Arguably the most-important set of reactions is associated with formation of the tropospheric 

ozone, which is one of the major components in photochemical smog. 

Due to a potentially huge number of reactions involved into the consideration, we will limit 

the analysis with a few simplified cases. 

The core of the photochemical ozone production and destruction is a set of three reactions: 

( 17) 223 ONOONO +→+  

( 18) 3

2,

2 ONONO Oh +⎯⎯ →⎯ 
 

( 19) 
23 OOO h +⎯→⎯ 

 

In differential form, these read: 
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This set of equations has a stationary equilibrium solution, which we will obtain under a 

simplifying assumption that the photodissociation destruction of ozone is much slower than 

the equilibrium establishment (well fulfilled in actual conditions). Then the reaction ( 19) can 

be neglected and the last term in ( 20) disappears.  
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We also have to invoke the mass budget consideration, which connect the initial and final 

amounts of NOx.  
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Then: 
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After that, the concentrations for NO and NO2 are obtained from budget equations ( 23). 

As one can see, the final ozone concentration is growing with availability of NO2 while NO is 

reducing it. For very high NO2, the equilibrium ozone concentrations are approximately 

proportional to square root of initial NO2. In case of sufficiently large NO concentrations, 

ozone can be consumed almost entirely. 

The above situation, being transparent and easy for the analysis, never occurs in reality. The 

main reason for that is presence of other branches of the chemical transformations converting 

NO to NO2. As follows from ( 18), creation of NO2 concentration above the photostationary 

equilibrium ( 23)-( 24) leads to formation of extra ozone while the system returns to the 

equilibrium. 

The most-common template of the reactions converting NO to NO2 without consuming ozone 

is the following.  

( 25) 
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Here R denotes an organic radical, for example: CH3-, C2H5-, etc. In fact, even HO2 can be 

included into this list. 

The first reaction in the chain ( 25) is usually slow in comparison with the second one. 

The RO2 radicals also play several roles, apart from the NO oxidation, which creates 

competing branches to the ozone-producing one. 

Accounting for the RO2 agent leads to modification of the equation ( 21) and adds one more 

to the system: 
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Here pRO2 is an overall production term of the RO2 agent: oxidation of RH with the OH 

radical may be not the only way producing it. 

Analysis of the system of equations ( 20), ( 22), ( 26), ( 27) is not trivial and in general case 

cannot be done analytically. Some specific situations, however, can still be considered.  
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Let’s assume that concentration of the RO2 agent is constant for any level of NO. This is not 

too unrealistic because of competing branches destroying the excess of RO2, as well as due to 

its stable supply from usually large reservoir of RH. Under this assumption, let’s consider 

several specific cases. 

Case 1. Ozone concentrations correspond to the photostationary equilibrium ( 24). From ( 26): 

d(NO2)/dt > 0, i.e. the equilibrium will be broken towards further growth of ozone and NO2.  

Case 2. Since in the case 1 the photostationary equilibrium does not stay due to the system 

migrating towards higher NO2, let’s consider what happens when NO2 ~ NOx and NO ~ 0. 

From ( 26), d(NO2)/dt < 0, i.e. the excess of NO2 will be photolysed reducing its 

concentration and stabilising the system. However, the equilibrium is not possible. Indeed, is 

assuming d(NO2)/dt = 0, from ( 20), again neglecting slow ozone photolysis, obtain that 

ozone continues to grow: d(O3)/dt = kRO2_NO[NO][RO2], which will lead to further reduction 

of NO and growth of NO2.  

Case 3. As it is seen from the above cases, the system tends to create an unlimited amount of 

ozone using-up RO2 gradually increasing NO2 and reducing NO. If allowing the process to go 

long enough, the direct dependence of NO and O3 can show up and the initial conditions will 

be forgotten.  

 

 

Removal processes 

There are two types of the removal mechanisms generally considered in the atmospheric 

composition modelling: dry deposition and scavenging with precipitation (often also called as 

wet deposition). Physical processes behind these mechanisms are strongly different, still 

under certain conditions resembling strong similarities with each other. Below the background 

of both of these mechanisms is considered and related back to the underlying features of gases 

and liquids. 

 

Derivation of the diffusion parameters from the molecular-kinetic 
theory 

Since the diffusion processes play the crucial role in both removal mechanisms, it is 

convenient to recall some of the key features and parameters of molecular diffusion using 

simplified considerations of molecular kinematic theory. 

Mean free-run path length in gas/liquid 

Let’s consider a gas molecule with own diameter d. A condition of its collision with another 

molecule is that the distance between the molecule centres is less than 2d. Let’s assume that 

the collision is non-dissipative, i.e. the total kinetic energy of colliding molecules does not 

change due to the collision. Let’s then consider the path on a molecule, which consists of a set 

of straight lines between the collisions and sudden changes of speed and direction at each 

collision. Also, let this be the only moving molecule while the others are motionless. Finally, 

let’s consider the sphere with the diameter 2d centred around the moving molecule. Denote 

the total volume of a broken cylinder drawn by this sphere while the molecule is in motion be 

V. Let the free-run lines are much larger than the molecule diameter d. Then the breakpoints 

do not change the cylinder volume, which will be simply:  
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 vvdV == 2  

Here  is the cross-section of the 2d-sphere, v is the mean velocity of the molecule and  is 

time interval.  

Then the number of collisions is equal to the number of molecules located in the volume V.  

 vnnVNc == , 

where n is the gas number-density. The total path passed by the molecule during this time 

period is v. Then the mean length of the free-run path will be:  
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With all the crudeness of the above consideration, the obtained relation is pretty accurate and 

gives good approximation of the actual free-run path estimate.  

A more rigorous consideration leading to correct estimate has to take into account movements 

of the other molecules as well. From mechanics it is known that 2-body collision with masses 

m1 and m2 can be considered with the coordinate system connected with one of the bodies, 

which is then motionless. However, the mass of the second body should be replaced with:  
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Since time of collision remained the same, so as forces pushing the molecule, the relative 

speed is larger than the absolute one with a factor /m  (energy is proportional to square of 

the speed). For m1=m2 this leads to 2vvrelat =  and:  
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which coincides with rigorous calculation of Maxwell.  

For the case of two different gases, one has to involve the requirement of the temperature 

equality for the both gasses in the mixture: 2
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Then the number of collisions of the molecule of the type 1 with the molecules of the type 2 

will become: 
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Finally, the free-run path of the molecule 1 due to collisions with the molecule type 2 is:  
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Molecular diffusivity. Einstein formula 

Let now assume that the molecules of the type 1 are under some regular force F (or any type: 

gravitational, electro-magnetic, …). Then they will start moving through the gas 2 with some 
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regular mean velocity u. The proportionality coefficient between  and u is called as the 

molecular diffusivity B: u=B. 

Evidently, in such case there will be an accumulation of the molecules of gas 1 downstream of 

the force . The potential energy of the molecules due to this force will be evidently E= -Fx 

(x-axis direction coincides with ). Then, according to Boltzmann’s law, the distribution of 

the molecules in space will be the following:  

kTxkTE enenn /

0

/

0

− ==  

Such distribution has the gradient of the concentration, which will cause the diffusion flux. In 

the stationary case these two fluxes will be identical and mutually compensating. Projecting 

them to x-axis, one obtains the stationarity condition: 

0=+− Bn
dx

dn
D  

Here D  is the diffusion coefficient of the gas 1 through the gas 2. From where it follows that: 

( 33) kTBD =  

This connection between the diffusion coefficient and the molecular diffusivity has been 

established by Einstein and named after him. 

Connection of micro- and macro- parameters for the gas diffusion 

Let’s consider the mutual diffusion of gas 1 and gas 2 through each other assuming that the 

thermodynamically these are in equilibrium (temperature and the total concentration n are 

constant in the whole volume: n1+n2=n=const). Let’s compute the diffusivity of these gases 

from the macro-parameters of the experiment. 

The diffusion fluxes will be: 
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121 −= ,   
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212 −=  

Such flux implies a certain regular mean velocity of the molecules (apart from zero-mean 

heat-induced one). That requires a certain force to support it. Finding this force will solve the 

problem. Let’s consider the single molecule of type 1, which has the non-zero mean velocity 

u1 (heat-induced fluctuations are neglected as they are zero-mean). The collision of this 

molecule with the other ones of gas 1 are of zero mean as well as they all are moving in the 

same direction with the same mean speed. Then the collisions with molecules of gas 2 are the 

only ones compensating the driving force. The molecules 2 also have heat-induced and 

regular components, where the first one can be neglected as zero-mean. Therefore, the 

problem is reduced to the a collision of two molecules with velocities u1 and u2. The centre of 

mass of these molecules moves with  
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In case of ideal non-dissipating collision, in the coordinate system connected with the centre 

of masses, the mean velocities after the strike are zero (the reflection is symmetrical). Then, in 

the laboratory system the mean velocities will be both V. Then the change of velocity of the 

molecule 1 due to collision will be  
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Then the total force acting on the molecule will be the change of the momentum in a single 

collision multiplied with the number of collisions per unit time: 
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The requirement of constant total density of the mixture leads to: 02211 =+ unun . Then: 
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Note that the diffusivity and diffusion coefficients do not depend on actual concentrations of 

the gases but only on their total concentration, mutual cross-section, and relations between 

their masses and heat-induced velocities. 

Viscosity and heat condactivity 

In the section 1, the equation for the closure of the turbulent diffusion equation has been 

derived using the mixing-length assumption. The same consideration passes for molecular 

diffusion, which can transport the concentration, momentum or heat. The only difference will 

be that instead of mixing length distance one has to consider the free-run path length, which 

has been derived above. 

Using the above notations, in presence of a gradient of the mean velocity along x-axis, the 

mean momentum flux across the axis will be  

dx

du
vmnG −=  

Here =1/3 is numerical coefficient, n is the gas density, m is its molecular mass, v is the 

mean heat-induced velocity and  is the free-run path length.  

This momentum flux corresponds to viscous stress: 

( 35)  vvmn
dx

du

dx

du
vmnxy ==−=−= ,  

Analogously, the heat flux due to molecular diffusion will be: 

( 36) vvv cvcvmnk
dx

du
k

dx

dT
cvmnq  ==−=−= ,  

Interestingly, ( 36) and ( 38) imply that the ratio between viscocity and heat condactivity is 

just the heat capacity cv. Experimentally, it is somewhat more general:  

( 37) vAc
k
=


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where A~2-2.5 depending on the rotational features of the particular molecules.  

The second non-trivial observation is that, with the free-run length  being inversely 

proportional to the gas density (see ( 32)), neither viscosity nor heat conductivity are 

dependent on it. This seemingly paradoxical finding has been confirmed by a set of 

experiments, which highlighted two competing processes: the distance of the unit transfer and 

the number of these small transfers per time unit, the first being inversely proportional and the 

second being directly proportional to density of the gas. These two compensate each other, 

which leads to the absence of the overall dependence. 

With the above background (albeit grossly simplified), one can consider the deposition 

processes and the underlying physics. 

Dry deposition  

The dry deposition process is generally associated with diffusion and forced transport through 

a viscous liquid, the latter being responsible for gravitational sedimentation of particles.  

The dry deposition term is usually introduced into the advection-diffusion equation as a 

boundary condition at the lower boundary (surface) and is described via a dynamic coefficient 

with a dimension of speed [m sec-1], usually called as dry deposition velocity Vd. (see part 1 of 

the course).  

( 38) ddz FVzC
z

C
K ==




)( 1  

Here z1 is the lowest model level for which the prognostic variables are computed. This level 

is also the reference height for the eddy diffusivity Kz and vertical concentration gradient.  

Evaluation of Vd is usually performed under the assumption that no sources of sinks are 

located below z1, i.e. Fd is constant from z1 down to the ground.  

Analyzing the physical processes driving the diffusion down to the surface, one can 

distinguish three main regions along the vertical axis: (i) turbulent diffusion down to very 

near the surface (some small height z0 usually called as roughness length), (ii) penetration 

through the thin air layer immediately adjacent to the surface, and (iii) actual uptake of the 

tracer by the surface (if several types of the surface are available, the corresponding fluxes 

have to be summed-up).  

Under the constant-flux assumption, it is natural to consider the parameterization in finite-

differences terms rather than the differential ones:  

( 39) 
s

dsrf

b

dsrf

a

dd VCzCVzCzCVzCzCF )')(())()(())()(( 001 −=−=−=  

Here the velocities with super-scripts a, b, s correspond to the above aerodynamic, quasi-

laminar and surface ranges with the corresponding concentrations and their borders.  

Equation ( 39) exactly corresponds to the one describing the flow of electric current through 

the resistances Ri, i=a,b,s. In more general terms, under the constant-flux assumption, the flux 

through each diffusion pathway, providing that it is described in a way similar to ( 39), is 

mathematically identical to equation for the electric current flowing through the 

corresponding resistance and concentration considered as the electric potential. This similarity 

is called as a resistance analogy for the dry deposition computation. 

The resistance analogy, being just a trivial replacement of the terms at the beginning, brings 

about a substantial set of mathematical tools for the flow analysis. For instance, the diffusion 

flux (i.e. the current) can be expressed via the Ohm’s law:  
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( 40) 
1

12 ),()(,,/ −−= dVRzCzCUFIwhereRUI  

Analysis of multi-pathways schemes can be simplified with two Kirchhoff’s laws: 

- for every circuit mesh the sum of in- and out- going currents is equal to zero 

- for every closed contour with no crossing wire lines, the sum of difference of 

potentials at each resistances is equal to the sum of impedances in the contour. 

Note that for both Kichgoff’s laws the sign of the current is considered positive if it flows into 

the mesh in question or if it flows in the same direction as the one selected for the contour 

analysis. 

From these tree laws, one can easily derive the rules for sequential or parallel combinations of 

the resistances and the corresponding equations for the current flows and the difference of 

potentials.  

The resistance analogy becomes particularly convenient for the analysis of the surface uptake 

of gases, where numerous paths and types of accumulation can be considered, so that the 

direct analysis of the differential equations becomes bulky (see S&P, section 19.5 as an 

example). After decomposition, however, each resistance can be either directly measured in 

the laboratory conditions or derived from semi-empirical theories, which take into account 

both chemical features of the tracer and the type and state of the particular surface. 

Consideration of the atmospheric resistances Ra and Rb can rely on the basic considerations. 

Aerodynamic resistance Ra 

As shown in the part 1 of the lectures notes, the mean Kz for the thick constant-flux layer from 

z0 till z1 can be expressed as follows: 

1
1

0

−









= 

z

z
z

z
K

dz
K  

For thermally neutral stratification, the eddy diffusivity is proportional to the maximum size 

of the eddies, which, in turn, are limited with the distance to the surface, i.e. Kz~z or, 

introducing the dimensionless proportionality coefficient (von Karman constant, ~0.4) and 

velocity scaling (friction velocity, u*):  

zuKz *=  

Then the resistance can be evaluated analytically:  

)/ln(
*

1
01 zz

u
Ra


=  

In more general case, empirical correction functions have to be introduced. One of possible 

shapes of such functions is given by S&P (pg. 907), which also allow the analytical 

expressions for Ra.  

Quasi-laminar resistance Rb 

This is one of the uncertain parameters, mainly due to ambiguous definition of the roughness 

length for each particular type of surface. It is generally accepted that every element of the 

surface roughness has the own thin laminar layer, with its “inner” part sticking to the surface 

obstacle and the outer one following the movement of the outside air flows. 
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Gases 

From a general point of view, for gases, the only mechanism of passing through the layer is 

molecular diffusion, which must be proportional to the diffusivity of the corresponding 

molecules D and inversely proportional to the kinematic viscosity of air . The thickness of 

the layer itself depends on turbulent stress of the surface, i.e. has to be related to friction 

velocity u*. The only combination of these parameters with right dimension is the following: 

( 41) 
*

)/(

*

3/23/2

u

D
a

u

Sc
aRb


==  

The dimensionless coefficient a has been experimentally found to be ~5. 

Particles 

For particulate tracers there are three mechanisms responsible for the dry deposition: (i) 

diffusive pathway, (ii) inertial penetration, often referred as impaction mechanism, and (iii) 

interception mechanism. All three mechanisms are again related to the thickness of the layer, 

thus they all have to be related to u*. It is also convenient to assume that the surface resistance 

is zero for aerosols but instead there is a certain fraction of particles that stick to the surface 

once having touched it. Then the overall Rb resistance will be: 

( 42) ( ) 1

Im )(*
−

++= IntBb vvvfuaR  

The fraction of particles sticking to the surface is quite close to 1 for fine aerosols but can be 

somewhat lower if particles have enough inertia to rebound after the collision with the 

surface. The measure of the inertia in comparison with the surrounding liquid viscosity is 

described by the Stokes number:  

( 43) 
g

uv
St s

2*
=  

Note that here the measure of the particle inertia is represented by its sedimentation velocity 

vs, which will be discussed further. Empirical studies suggest that the square root of this 

number is a reasonable description of the fraction of rebound particles. For small ones it goes 

to zero. 

For Brownian mechanism, similar formulations as for gases ( 41) can be involved, with 

appropriate corrections owing to somewhat different scales and mechanisms of molecular 

diffusion and Brownian movement:  

( 44) c
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b C
D

kT
D

D
Scv
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


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
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−

−
 

Here   varies between 1/2 and 2/3, with larger values attributed to rougher surfaces, D is the 

Brownian diffusivity, and Cc is a so-called no-slip correction introduced for the very small 

particles whose size is less than the free-run path of the surrounding gas molecules. 

Comparison of ( 33) - ( 34) for molecular diffusion, from one side and ( 44) for Brownian 

diffusion from another reveals the similarities between the underlying processes.  

Impaction corresponds to inertial penetration, which can be described in terms of a ratio of the 

depth of the laminar layer and the distance at which the particle velocity gets relaxed towards 

the surrounding liquid. A semi-empirical model of Zhang et al (see S&P, pg.910) suggests:  
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( 45) 
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Here y depends on land-use category. 

Finally, the interseption mechanism depends almost exclusively on the ratio of the particles 

and the characteristic size of the obstacles.  

Combining the above terms, one can obtain the following estimate for Rb: 

( 46) 
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Surface resistance Rs 

Detailed consideration of the surface resistance lies outside the current course due to almost 

entirely empirical character of the corresponding parameterizations. Here it is only worth 

mentioning that for the aerosol compounds it is assumed to be zero, while for gases it depends 

on type of the surface, type and state of vegetation, humidity of the surface and chemical and 

physical features of the tracer in question. More information can be found in S&P, p.912 and 

further. 

 

Gravitational sedimentation of aerosol particles 

Let us consider the particle moving under the gravitational force. According to the Brownian 

diffusivity formula ( 44), it will define the mean stationary velocity of the particle. The 

corresponding drag force has been derived by Stokes and has its name:  

( 47) 
13 −−=−= cpStokes CvDmgFmg

dt

dv
m   

where m is the mass of the particle and g is gravitational acceleration.  

Then the stationary sedimentation speed will be:  

( 48) c
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==  

Let now consider the very widely used representation of the gravitational sedimentation 

process within the scope of resistance analogy. According to that, the sedimentation flux 

should be the product of the concentration at the reference height multiplied with the 

sedimentation velocity. This resistance is then parallel to the sequential cascade of the Ra and 

Rb. Applying the Kirchhoff’s rules, one can easily obtain: 

( 49) 
1111 )()( −−−− ++=++= basbasdd RRvRRRR  

However, this formula directly contradicts to another one, widely used in the literature and 

models: 

( 50) 
11 )( −− +++= sbabasdd vRRRRvR  
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The later formula is derived without any formal considerations of the resistances but rather 

from the constant-flux assumption: 
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This illustration shows the problem in applying the resistance analogy – essentially the 

description of flows due to difference of two generic potentials at two points – in the case 

when the flow is determined by externally decided velocity and concentration of the species. 

 

Wet deposition 

Scavenging with precipitation is a very complicated process with limited possibilities to study 

it in analytically. In most cases, the scavenging coefficients are measured in field or 

laboratory conditions and then interpreted in terms of the processes that are assumed to drive 

the observed dependencies. In the end, the parameterization is reduced to the scavenging 

coefficient , which defines the rate of the removal: 

( 51) C
dt

dC
−−  

This coefficient depends on virtually all imaginable parameters: type of precipitation, its 

intensity, droplet/snowflake size, electric phenomena, tracer chemical and physical properties, 

solubility, pH of the precipitation, etc. Some of the features are inter-connected and can 

dynamically change during the fall of the specific droplet. 

Therefore, below only a short outline of the main driving forces and corresponding links are 

given. 

Scavenging is usually split to in-cloud and sub-cloud parts. The main difference is in dynamic 

of the droplet population: inside the cloud the droplets grow, while during the free-fall 

towards surface they tend to evaporate. For scavenging of particles, an additional dimension 

of complexity is the particle inertia, which results in “wiping” effect when the falling droplet 

cleans the entire underlying column or its part from aerosols. 

Usually reasonable estimate of the scavenging efficiency of soluble gases (for both in- and 

sub-cloud scavenging) comes from the following basic equation: 

( 52) )()(
HRT

C
CKCCK

dt

dC aq

gceqgc

aq
−=−=  

Here Kc is the mass transfer coefficient between the gaseous and aqueous phases, Cg is the 

gas-phase concentration of the tracer (denoted as C in the above chapters), Caq is the 

concentration in the aqueous phase, H is the equivalent Henri’s law constant, R is universal 

gas constant, T is temperature. The main complexity is now split between two coefficients: 

the Henri’s law constant describing the solubility of specific tracer in stationary conditions, 

and the mass transfer coefficient Kc, which describes the dynamics of the solution process. 

 


